

CURTA

CALCULATING TECHNIQUES

AUTOMATIC BUSINESS MACHINES LIMITED
15, CROMWELL ROAD, LONDON S.W.7.

INDEX

Preface Calculation with the Curta
2 Abbreviated Notation
4 Handling the Curta

GENERAL TECHNIQUES

A 1 Successive Multiplication
 A 2 Transfer Multiplication
 A 3 Successive Division
 A 4 Complementary Division

A 5 Accumulation of Quotients

COMMERCIAL

C 1 Sterling
Curta Tables Nos. 1, 2, 3 and 4.
C 2 Wages
C5 Percentages
C 10 Amortization of Debts by Annuitie

ENGINEERS

E 1 Gear Ratios
E 2 Sides of a Triangle
E 3 Heat Insulation

MATHEMATICAL

M 1 Square Roots
Curta Table No. 10
Cube Roots
Curta Table No. 102
M 3 Fractional Powers of Numbers
M 4 Quadratic Equation
Cubic Equations
M 10 Summation of Squares
M 11 Accumulation of Products
M 18 Evaluation of a Polynomial or of a Power Series
M 19 Evaluation of Series
M 20 Construction of an $n^{\text {th }}$ order Polynomial from $n^{\text {th }}$ Differences
M 21 Interpolation
Curta Tables 103 and 104

T1 Cotton Cloth Calculations
Curta Table No. 20

CALCULATION WITH THE CURTA

This manual is primarily intended to supplement the Manufacturers' little handbook 'Instructions for the use of the Curta Calculating Machine' which should first be read by the Curta user. It is hoped however, that it will prove useful to calculating machine users generally.

The operation of the machine itself, whether Model I or Model II, is so simple that many users may not at first appreciate the large variety of calculations which can be solved with the Curta. Basically, the Curta only performs repeated addition, but there are few operations of numerical analysis and virtually no commercial calculations which cannot be reduced to a process of repeated addition.

It is the purpose of this manual to show the most suitable method or 'programme by which common commercial and scientific calculations can best be adapted for solution by the Curta. Further instruction sheets will be made available from time to time and it is hoped that readers will send us a note of any methods, not so far indicated, which they have found useful for special purposes. In this way, a really comprehensive 'library' can be built up. Every six months we will circularise users with a copy of the latest Index so that they may apply for any new instruction sheets likely to be of interest o them.

Anyone who has attempted to put instructions for calculating procedure on paper will appreciate the difficulty of explaining a technique clearly, yet concisely. Calculations which take only a few seconds to perform are liable to take as many minutes to describe, and Examples are more useful than detailed descriptions. For these reasons we have evolved an abbreviated notation for describing the process of solution which we hope will be readily understood.

We strongly recommend that the examples should be worked out on a Curta when the instructions are first read. Generally, a Model I will be sufficient unless otherwise indicated.

The various uses of the Curta will be indexed by a letter showing the general type of calculation and a serial number indicating the particular calculation described.

SUCCESSIVE MULTIPLICATION

We give this name to multiplication of several factors, e.g. $a \times b \times c \times \ldots$. It is, of course possible to re-set each partial product but this wastes time and re-setting or writing down partial products may lead to errors.

Having obtained the first partial product on PR, set the next factor on SR WITH THE RIGHT HAND OPERATIVE DIGIT (digit other than zero) reduced by 1 . Step the carriage so that this digit is below the left hand digit in PR and rotate the handle through the number of turns corresponding to that digit of PR. Step the carriage one turn to the left and turn the handle through the next digit and so on.

What we are really doing is to add $a b(c-1)$ to $a b$, getting $a b c$.

Example (i)	$123 \times .345 \times 567$		
	SR	CR	PR
C1	/. 345	/123	/42.435*
C5	/566	/42435	/24060.64

Answer: 24,060.645

```
Example (ii) \(24,060.645 \times 192.1\), where the first figure s a product already produced on PR.
```

If we have more than the $\mathbf{C R}$ capacity set on $\mathbf{P R}$, we turn the carriage to its extreme left hand position, 6 with Model I Curta, and set the new factor with the last digit reduced by 1 immediately under the left hand digit of PR, thus:-

C6 / 192.000 4622041.2645*

Answer = 4,622,041.2645

Note that we set .0 under the left hand digit of PR.
Note also that we have not been able to step the carriage so as to multiply by the two fight hand digits, 4 and 5 , and the result will therefore not be exact. In fact, it will have an error up to 5 in the sixth place of the answer. If we want an exact answer we mus either re-set the last factor on the right of SR and multiply by the remaining digits, having stepped the carriage to the left hand of these digits, or we must reset the last partic product and multiply by the last factor in the normal manner

ABBREVIATED NOTATION

The Curta has 3 Registers, or groups of dials, which will be indicated by their initials:-

Setting Register:	SR
Counter Register:	CR
Product Register:	PR

A carriage position will be indicated thus:-

Carriage to position 3: C3

The carriage position indicated is normally that for the 1 st step of the calculation.

The position of the Reversing Lever, that is the Lever which reverses the gearing of $\mathbf{C R}$, will be indicated by an \boldsymbol{R} immediately after the Carriage Position when the reversing lever is down, i.e. in the Reverse Position (to count negative turns). If the ever is up, the \boldsymbol{R} will be omitted.

The position of decimal markers will be indicated as follows:-

> Decimal place:
Decimal places where
markers are also set
for other purposes:
Marker used for other
purpose:
Where two markers are

required, e.g. to
indicate a split $S R:$

In order to indicate the position of a setting or result on the corresponding register and to avoid printing unnecessary zeros, an oblique stroke / will be printed either to the left or right of a number indicating that the dials on the left or right will read 0 .

To indicate that all the dials to the left of a number will read 9 , a nine followed by an oblique stroke / will be placed on the left of the number, thus $9 /$.

HANDLING THE CURTA

Examples:

A setting of 1.534 / indicates that 1.534 has been set on the four left hand dials of $\mathbf{S R}$.

9/7,641:27 on PR of Model I indicates that the figures 999997,641:27 appear in the PR dials. One decimal marker has been set to indicate the 'thousands' and two decimal markers to indicate the decimal place.

In showing the steps of a calculation, $\mathbf{S R}$ will always be placed on the left, $\mathbf{C R}$ in the centre and PR on the right.

An asterisk will be placed on the right of the result. Thus, if 1.534 is to be multiplied by 37.2 and the result shown positively in the extreme left hand side of PR in Model I, the abbreviated description will be:-

SR CR PR
C6 /1.53400 37.2/ 57.0648/*
This means that we start with the carriage in position 6, the Reversing Leve up, set 1,534 in SR dials 6 to 3, multiply by 37.2 from the left and obtain the result 57.0648 in the left hand dials of PR.

It is sometimes desirable to set a complement into the machine or to convert a number, read from $\mathbf{P R}$ or $\mathbf{C R}$, into its complement. This can very easily be done mentally by deducting each digit from 9, except the right hand digit, which should be deducted from 10

5390724	
Example: (i) Set complement as	$9 / 4609276$
	$9 / 400912$
Example: (ii) Read complement as	599088

It will be found with a little practice that complements can be set or read almost as easily as the numbers themselves.

There are several techniques in which the CR dials are not used and where it is not necessary to set the Reversing Lever down. In the examples, however, the figures appearing in the $\mathbf{C R}$ dials and the position of the Reversing Lever are generally given and the CR dials are cleared in order to show the turns of the handle which are made at each step. Of course full advantage should be taken of short cuts so that the number of turns actually made will be many less than the reading on the CR dials.

There are a few points in handling the Curta which we do not think have been made sufficiently clear in the Makers' Handbook.

1. When holding the machine in the left hand, the third and little fingers should be clear of the setting levers to avoid moving these levers by mistake during operation
2. The carriage should not be gripped tightly by the thumb and forefinger. When the carriage has been lifted by thumb and forefinger, pressure of the forefinger should be instinctively released and the carriage rotated by the thumb only so that it must drop into the next position. During a calculation the carriage should only be stepped one place at a time, even if no turns are to be made in a position. In this way, the carriage can be moved without looking at the machine and there will be no danger of moving two steps instead of one.
3. The crank handle should be held lightly between the thumb and forefinger of right hand. This will avoid the danger of passing over the zero position by mistake.
4. Left handed operators will generally find it more convenient to hold the Curta in their right hand, since they will wish to hold their pencil in the left hand whilst operating the machine.
5. Normally, the clearing ring should be left in the right hand position, i.e. between the first dial of PR and the last dial of CR. It is possible to clear a portion of PR or $\mathbf{C R}$ if desired and this can be very useful for certain calculations. If the left hand side of $\mathbf{P R}$ is to be cleared after each calculation, it will of course be necessary to leave the clearing ring in the left hand position.
6. The use of short cut methods of multiplication and division cannot be too strongly stressed. The operator should get accustomed to short cutting when multiplying from the left or right and when using such special techniques as successive and transfer multiplication described in Section A.
Time saved in rotating the handle is not the only advantage of short cutting in multiplication. It also minimizes mistakes in counting turns of the handle as the number of turns in any one position of the carriage (other than the left hand position) need seldom be more than five.
7. When not in use, the Curta should be replaced in its rubber-sealed metal case, both to avoid accidental damage and the collection of dust and dirt on the setting levers, resulting in stiffness of these levers. If the levers should become at all stiff, the Curta should be returned to Automatic Business Machines Ltd., 15 Cromwell Road, London SW7.

SUCCESSIVE DIVISION

Suppose we have a figure in PR at some stage of calculation, and we want to divide it by some divisor and obtain the quotient in PR, perhaps because we wan to divide the quotient by another figure. We use a method which we have called 'Successive Division', because of the analogy to successive multiplication. The method is sometimes called 'Complementary Division'.

Example: Divide 567 (already produced on PR as, say, 56700000) by 4560

Set the complement of 456 on $\mathbf{S R}$, preceded by a figure 9 , thus
C6 /95
CR
PR
$19544 \quad 124342$
/124342(0048)

Answer = /. 124342

Note that although extra figures may be produced in PR, the quotient can only be obtained accurately to the same number of figures as the capacity of CR.

Note that the quotient is also produced in CR and this can he used as a check that the calculation has been performed accurately

Successive division can be very useful but takes a little practice. The operato should carry the two left hand figures of the divisor in his mind during the operation.

Since the quotient remains in the PR, it can be divided by a further divisor, either by subtractive division or by successive division.

Thus, with the former method, we have

	SR	$C R$	$P R$
C2	$/ 1920$	$/ 45$	4622049.9045^{*}
		Answer $=4,622,049.9045$	

An objection may be made to this method of successive multiplication on the grounds that we cannot check the multiplier, unless we write down the partial product and clear CR. A method of overcoming this is to reduce, not the right hand operative digit, but the next zero on the right, by one.

Thus, taking the same calculation as before, viz $123 \times .345 \times 567$

	$S R$	$C R$		
C1	$/ .345$	$/ 123$	$/ 42.435^{*}$	Clear CR
C5	$/ 566.9$	$/ 42435$	$/ 24060.6450^{*}$	

Notice that as we rotate the handle through the number of terms corresponding to the digit of PR immediately above ' 9 ', this digit is reduced to zero and therefore there is no digit of PR immediately above .9 , this digit is reduced to zero and therefore there is no danger that we turn through the wrong number of turns. Notice also that it we wish to use
the decimal markers we must move the marker in PR one place to the left in the second stage as there is then one decimal place in SR.

There are occasions when it is required to multiply a negative quantity on PR (appearing as a complement) by a positive quantity, producing the product as a complement on PR; or by a negative quantity, producing a positive amount on PR; or to multiply a positive quantity on PR by a negative quantity, producing a negative amount on PR

A variation of the Successive Multiplication technique is used and is applicable to such problems as evaluation of Polynomials (see M 18) where some of the terms are negative.

Example (i) $\quad-123 \times 47$

Where the complement, $9 / 877$ is set on PR. Set / 46 on SR. Carriage to $\mathbf{C 4}$ so that right hand figure ' 6 ' on SR comes below the right hand' 9 ' on PR. Make one negative turn. Carriage to C3 and proceed as for normal successive multiplication, thus:-

	SR	CR	PR
C4	$/ \mathbf{4 6}$	$9 / 877$	$9 / 4219^{*}$

The amount showing on PR is the complement of 123×47, i.e. of 5781 .

Example (ii) -123×-47, where $9 / 877$ is set on PR.

Set / 48 on SR and proceed as before but making one positive turn in position C4 and negative turns thereafter, thus:-

		SR	CR	PR
C4	\boldsymbol{R}	$/ \mathbf{4 8}$	$\mathbf{9 / 8 7 7}$	$/ 5781^{*}$

Example (iii) 123×-47, where / 123 is set on PR.
Set / 48 on SR, carriage to C3 and proceed as in normal successive multiplication but making subtractive, instead of additive, turns.

		SR	CR	PR
C3	\boldsymbol{R}	$/ \mathbf{4 8}$	/123	$9 / 4219^{*}$

We can thus formulate the following rules
(1) When multiplying by a negative quantity, add ' 1 ' to last operative figure set on $\mathbf{S R}$, instead of subtracting ' 1 ', and rotate the handle in subtractive position through the number of turns corresponding to the digits on PR
(2) If a complement is set on PR, step the carriage so that the right hand figure on SR comes below the right hand 9/ on PR, turning the handle in the opposite direction to that used for the other digits of PR.

TRANSFER MULTIPLICATION

We give this name to a method of multiplying a figure produced in CR by a figure set on $\mathbf{S R}$, without re-setting the $\mathbf{C R}$ figure. This method can be very useful in series of multiplications and divisions, such as

$$
\frac{a \times b \times c}{d \times e}
$$

This calculation is made in stages - first $a \times b=f$ on $\mathbf{P R}$, then $f \div d=g$ on $\mathbf{C R}$ then $g \times c=h$ on $\mathbf{P R}$, finally $h \div e=i$ on $\mathbf{C R}$

Example

$\frac{123 \times 345 \times 567}{234 \times 456}$

SR CR PR

C6	$/ 345$	$123 /$	$/ 42435000^{*}$	Clear CR
C6 R	$/ 234$	181346^{*}	$/ 36$	Clear PR
C1 $R ~ / 567$	000000	$/ 102823182^{*}$		
C6 R	$/ 456$	225489^{*}	$/ 198$	

Note that in the 3rd stage, when we have to multiply a figure on CR, 181346 by 567 , we merely set $/ 567$ on SR and using positive turns, reduce each digit of CR , in turn, to zero. This is very quickly done, with virtually no risk of mistake, by positive turns. Since the Reversing Lever is down, the respective figures in CR will be reduced by the number of lurns made. At the same time the figure set in $S R$ is multiplied by the number of turns made.

We can, theoretically, carry on like this indefinitely, alternately multiplying and dividing. After the first stage the Reversing Lever can be left down.

Generally it is not worth while setting decimal markers, unless a number of very similar calculations have to be made, and the decimal markers can be left in position for all stages.

If the number of factors in the numerator exceed those in the denominator by more than one, we can use successive multiplication, per method A 2, at one or more stages. If the factors are identical in number, we can start with a division. If the factors in the denominator exceed those in the numerator, we must either multiply some of these together or re-set the quotient at some stage, or use the method of successive division described in A 3 .

STERLING

(a) Decimalising

Sterling calculations are normally carried out by converting shillings and pence into decimals of $£ 1$, or pence into decimals of one shilling. The latter is used mainly for small amounts.

Curta Tables 1 and 2 show the decimal equivalents of pence and fractions of pence expressed as decimals of $£ 1$ and one shilling respectively.

Curta Table 5 shows shillings and pence as decimals of $£ 1$; shillings can, however easily be expressed as decimals of $£ 1$ by dividing by 2 . Thus $17 /-=.85$ of $£ 1$

Example (i) Find the cost of 455 articles @ $3 / 61 / 2 d$. each.
From Table 2, 61/2 is equivalent to. 54167 of $1 /$ -
We therefore set 3.54167 on SR and multiply by 455 in the normal manner
SR CR
/455
PR

C1 /3.54167 /45

/1,611.45985

Mentally divide 1,611 shillings by 20 obtaining $£ 80$. $11 /-$... Looking up the nearest figure to .45985 on Table 2 we obtain .4583 or $51 / 2 d$ d., so that the answer is:-

£80. $11.51 / 2 \mathrm{~d}$.

The pence may alternatively be found by mentally multiplying the decimal by 12 or by memorising the first two decimal places, if much of this work is being done.

Example (ii) Find the cost of 215 shares @ $£ 1.3 .7 \frac{1}{2}$ d. each
Set the pounds on SR followed by the shillings divided by 2 with
say, 5 decimal places, thus 1.15000
From Table 1, $71 / 2 d$ d. is equivalent to 03125 of $£ 1$
We therefore add this to the previous setting, so that 1.18125 is set on SR
SR

CR

PR
Cl / 1.18125 /215
/253.96875*

The answer is thus $£ 253.96875$ or $£ 253$. $18.41 / 2 \mathrm{~d}$.
The shillings can be found by reducing the first two decimal figures to a multiple of 5 , in this case 95, and multiplying by 2 . The remainder, 01875 , can be looked up in Table $)$ giving $41 / 2 d$., or we can regard the 2 nd and 3rd place of decimals, in this case 18 , as farthings, mentally dividing by 4 to obtain $4 \frac{1}{2}$ d. If the pence figure thus found comes to 6 d . or over we deduct a farthing. Thus, for .037 , which lies between $8 \frac{1}{2}$ and 9 d ., we obtain $91 / 4 d$. less $1 / 4 \mathrm{~d}$., equals 9 d .

COMPLEMENTARY DIVISION

In a division calculation, instead of setting the dividend on PR and proceeding by Subtractive Division, there may, in some cases, be an advantage in setting the complement of the dividend on PR and building up PR to zero with the divisor set in SR. This is particularly the case with such calculations as $\frac{a \times b}{c}$ carried out in one operation, when we wish to obtain the maximum capacity of which the machine is capable.

Example:	123×4	the answer required to 6 placesof decimals		
	234567			
Using a Model II,				
	SR	CR	PR	
C6 R	/456789	/100000	9/54321100000	Clear CR
C6	01230234	/194737	2395265099738	

Answer: = 239527

We use the right hand side of SR, 234567 to build up the right hand side of $\mathbf{P R}$ to as nea zero as possible. Meanwhile, the left hand side of SR, O123, is multiplied automatically by the quotient of $456789 / 234567$ and the product shown in the left hand side of PR.

Note: The positioning of the Reversing Lever and the clearing of CR are actually enecessary since the CR dial is not used, but they are specified here to show that the unnecessary since the CR dial is not used, but they are specified here to show that the oneration and the quotient is shown on CR in the 2nd operation.

Note also that if we had made the calculation by setting 01230234567 in SR and building up to 456789 in PR, we should have had the wrong answer, 239572, because e left hand portion of the multiplicand, 456789, would have overlapped the correct answer.

ACCUMULATION of QUOTIENTS

Quotients can be accumulated on CR by build-up division, the reversing leve being pushed up for positive terms and down tor negative terms. To set the decima marker in PR, add the maximum number of decimals in the denominators to the number of decimal places required in the answer, plus 1 . Decimal markers should always b set when accumulating quotients.

$$
\text { Example (i) } \quad \frac{32.45}{1.39}+\frac{69.8}{7.465}-\frac{101.34}{11.7}
$$

The answer is required to three places of decimals.
Decimal markers are set before positions 3,7 and 4 in SR, PR and CR

	SR	CR	PR	
C6	$/ 1.390$	$/ 23.3453^{*}$	$/ 32.4499670$	Clear PR
C6	$/ 7.456$	$/ 32.6956^{*}$	$/ 369.7999895$	Clear PR
C6 R	$/ 11.700$	$/ 24.0341^{*}$	$/ 101.3395500$	

Answer $=24.034$

When the numerators are the sum or differences of other numbers the accumulation can still be carried out in the above way, but using subtractive division, provided care taken to correct CR as in the example below. In calculating the position for the decima marker in PR , we must add to the maximum number of decimal places in denominators or numerators, the number of decimal places required in the answer, plus 1 .

Example (ii) $\frac{13.475-5.75}{6.29}+\frac{17.24+3.92}{7.86}-\frac{18.715}{9.5}$
The answer is required to three decimal places.
Decimal markers are set before positions 3,7 and 4 of SR, PR and CR

	SR	$C R$		
C5 R	$/ 13,475$	$99 /$	$/ 13.4750000^{*}$	
R	$/ 5.750$	0	$/ 7.7250000^{*}$	
C5 R	$/ 6.290$	$/ 1.2281^{*}$	$/ 0.0002510$	Clear PR
C5 R	$/ 17.240$	$/ .2281$	$/ 17.2400000$	
R	$/ 3.920$	$9 / .2281$	$/ 21.1600000$	

Now clear SR and make two negative turns to correct CR.

	${ }^{\text {SR }}$	CR	PR	
C5 R	0	$/ 1.2281$	$/ 21.1600000$	
C5 R	$/ 7.860$	$/ 3.9202$	$/ 00.0000940$	Clear PR

The last quotient can be obtained by building-up division, but we keep the Reversing Lever down because it has to be subtracted
C5 R $\quad / 9.500$
19502
PR
/ 1.9502
/18.7150000

Example (iii) Find the cost of 5, 150 articles at $£ 3.17 .7 \mathrm{~d}$.

From Table 5, we obtain 8791667 for $17 / 7 \mathrm{~d}$.

	SR	CR	PR
C1	3.8791667	$/ 5,150$	$19,977.708500^{*}$

Answer $=£ 19,977.14 .2 \mathrm{~d}$.

To decide the number of decimal places to be set on SR, it is advisable to add the number of digits in the multiplier to 3 , if decimals of $£ 1$ are to be set, or 2 if decimals of $1 /$-are set. This will enable the answer to be given lo the nearest farthing. Thus, in the bove example, we had 4 figures in the multiplier so that we set 7 decimal places of $£ 1$

(b) Pence Transfer

The disadvantages of decimalising sterling are that a table is required, unless a skilled operator is employed who can memorise the decimal equivalents, and, if the multiplier is large, a considerable number of decimal places have fo be set. An alternative method, which is especially useful when the sum, only, of a number of terling products is required, is to set the shillings and pence, separated by several zeros. After multiplication, the PR shows the answer in shillings and pence. The surplus pence (in excess of 11 d .) can be converted into shillings by an adaptation of the method of Successive Division given in A 3 .

Example (i) Check the following Invoices in total.

125 dozen @ 3/7d. per dozen			22.7.11d	
65 articles@ 13/11d.each			45. 4. 7d.	
75 lbs @ £ 1.3.5d. per lb.			87. 16.3d.	
			£155.8.9d.	
	SR	CR	PR	
C1	/3,000007	/125	/375,000875*	Clear CR
Cl	13,000011	/65	/1220,001550*	Clear CR
Cl	23,000005	/75	/2945,001965*	Clear CR

Now follows the transfer of the surplus pences

	SR	CR	PR
C3	1,999988	$/ 163$	$/ 3108,000009^{*}$

Answer $=3108$ shillings and ninepence $=£ 155.8 .9 \mathrm{~d}$.

As the operation is one of checking only, it is not really necessary to Clear CR. Th number of zeros to be leff between shillings and pence depends on the quantity of items and number of entries on the invoice. Here we could have reduced the number of zeros by 2. If, at some stage of the calculation, the pence threaten to flow over to the shilings Me PR, we can alwas make a pence tansler and hen con mue whe her he invoice. In mand the pence transter, we set 88 under the right hand pence figures and $9 s$ up to the shillings figure.

We can deal with fractions of pence by decimalising them, as this is easy.

Example (ii)

$38 @ 2 / 73 / 4 \mathrm{~d}$.	$5.0 .61 / 2 \mathrm{~d}$.
$150 @ 13 / 1 / \mathrm{d}$.	$99.1 . \quad 3 \mathrm{~d}$.
$144 @ 5 / 111 / 4 \mathrm{~d}$.	$42.15 . \quad 0 \mathrm{~d}$.
	$\underline{£} 146.16 .91 / 2 \mathrm{~d}$

C1	$/ 2,0007.75$	$/ 38$	$/ 76,0294.50^{*}$
C1	$13,0002.50$	$/ 188$	$/ 2026,0669.50^{*}$
C1	$/ 5,0011.25$	$/ 332$	$/ 2746,2289.50^{*}$
C3	$/, 9988.00$	$/ 522$	$/ 2936,0009.50^{*}$

Answer $=£ 146.16 .91 / 2 \mathrm{~d}$.
This method of checking invoices is very speedy and can be carried out by operators with liitle training. It gives a more independent check than checking each item. Th
 separated from the shillings on Curta Model II.

C 5

PERCENTAGES

Percentages are used in a great variety of ways in Commerce and Industry. A few of these are dealt with in 'Instructions for Use of the Curta'. The object or these notes is to summarise the various types of percentage calculations and to show the quickest way of obtaining the answers on the Curta.

Example:

(1) $a \%$ on $b=\frac{a \times b}{100}$
(2) \quad Add $a \%$ to $b=b+\frac{a \times b}{100}$
(3) Rebate or Discount of $a \%$ on $b=b-\frac{a \times b}{100}$
(4) a expressed as \%age of $b=\frac{a \times 100}{b}$
(5) a, b and c expressed as \%ages of their sum, $a+b+c$

$$
=\frac{a \times 100}{a+b+c}, \text { etc. }
$$

(6) Selling price to give a percentage profit of $a \%$ on sale for

$$
\text { a cost price } b=\frac{b}{1-\frac{a}{100}}
$$

(7) Increase or Decrease expressed as a percentage of the larger or smaller figure. If b is greater than a
$\%$ increase or decrease on $a=\frac{(b-a)}{a} \times 100$
$\%$ increase or decrease on $b=\frac{(b-a)}{b} \times 100$
(8) Successive Percentage corrections, $d+a \%+b \%-c \%$, etc.

A percentage is normally required to a certain standard number of decimal places, so it is advisable to set the decimal markers, once and for all, before places, so it is advisable to ser the decimal markers, once and tor all, before

wages

The Curta can be used with advantage in the Wages Office, either as the sole means of calculation, or to supplement existing calculating machines at peak periods. For this purpose it has the advantages of low capital cost and simplicity of operation enabling it to be used by comparatively untrained staff.

Example: Assuming a standard working week of 44 hours, calculate the wage earned in the following cases.

Employee	Standard Wage	Equivalent Number of Hours Worked	Wage Earned
A. Smith	6. 15. 0.	$471 / 2$	7.5 .9.
W. Jones	$" "$	49	7.10 .5.
H Brown	".2.6.	$583 / 4$	9.2 .7.
R. Robinson	.	$371 / 4$	6.0 .8.
S. Green	59	9.11 .1.	
It is best to use a Curta II.			

The standard hours are set on the right of SR and not altered. The standard wage is set on the left of $\mathbf{S R}$ and only altered when the standard wage group alters. We build up the standard hours to the equivalent number of hours worked on the right of PR and the wage earned is shown on the left of PR. We only clear the CR and PR dials when the standard wage changes.

C5	/6.750000044	/10795	/7.2866250,47.4980*	
C3		/11136	/7.5168000,,48.9984*	
C4		/13352	/9.0126000,,58.7488*	Clear CR \& PR
C5	/7.125000044	/8466	/6.0320250,,37.2504*	
C4		/13409	/9.5539125,,58.9996*	

(6) Selling price to give a percentage profit of $a \%$ on sale for

$$
a \text { cost price } b=\frac{b}{1-\frac{a}{100}}
$$

Example (vii) A number of articles costing 22/9, 25/6, 31/3, etc. have to be written up to their selling prices to the nearest penny to give a profit of $22 \frac{1}{2} \%$ on the selling price.

If there are a large number of articles, we compute $\frac{100}{100-a}$
i.e. $\frac{100}{77.5}$

Set the quotient on SR and multiply by each cost price in turn. It is better to work in decimals as if we require 2 places of decimals in the answer to give the nearest penny, and as there are at most 2 digits in the shillings, it is sufficient to have 4 decimal places in the quotient. We therefore set the carriage in position 5 for evaluating $\frac{100}{77.5}$

	SR	CR	PR	
C5	$/ 77.5$	$/ 1.2903^{*}$	$/ .9999825$	Clear CR \& PR
C1	$/ 1.2903$	$/ 22.75$	$/ 29.354325^{*}$	- do -
C2		$/ 25.50$	$/ 32.902650^{*}$	- do -
C3		$/ 31.25$	$/ 40.321875^{*}$	

Answer $=29 / 4,32 / 11,40 / 4$, etc

(1) $a \%$ on $b=\frac{a \times b}{100}$

We merely set b, multiply by a and mark off 2 additional decimal places on PR

Example (i) Calculate a dividend of $41 / 2 \%$ on $£ 1,115.10$. 6. stock

SR	CR	PR
C1 $1,115.525$	$/ 4.5$	$/ 50.198625^{*}$

Answer = £50. 3. $11^{3 / 4} \mathrm{~d}$.

Note that there are 2 more decimal places in PR than in SR + CR. Unless the percentage is more than 100 , it is normally never necessary to set more than 3 decimal places in SR or sterling amounts.
(2) Add $a \%$ to $b=b+\frac{a \times b}{100}$

In such cases, as in the extension of invoices, it is often desired to know both the percentage addition and the total. If we only have one such calculation to make we can set b and multiply first by $\frac{a}{100}$ and then by 1 , without clearing PR. If we have a number of such calculations to perform with the same percentage, we can set $\frac{a}{100}$ on the right of $\mathbf{S R}, 1+\frac{a}{100}$ on the left and multiply by b, obtaining the percentage on the right of PR and the total on the left

Example (ii) Add $171 / 2 \%$ to an invoice for $£ 13$. 14.7

Example (iii) Add $12 \frac{1}{2} \%$ to a number of invoices.
Using a Curta II. First invoice for £ 18. 4.9.

	SR	CR	PR
C1	1.1250000 .125	/18.237	20.516625:2.279625*
	Answer $=$ Net amount of invoice		£18. 4. 9.
			2. 5. 7.
			£20. 10. 4.

This method is obviously impractical if the amount of the invoice is large or there are too many significant figures in the percentage. The setting will be left for the next calculation
(3) Rebate or Discount of $a \%$ on $b=b-\frac{a \times b}{100}$

Precisely the same considerations apply as for (2)

Example (iv) Deduct a discount of $2 \frac{1}{2} \%$ from $£ 136$. 15. 4 .

	SR	CR	PR
Cl	/136.766	/2.5	/3.419150*
C4		/97.5	/133.346850*
	Answer $=$ Gross amount of invoice Less $21 / 2 \%$ discount		$\begin{array}{r} £ 136.15 .4 . \\ \text { 3. 8. } 4^{11 / 2} . \end{array}$
			£133. 6. $111 / 2$.

(4) a expressed as \%age of $b=\frac{a \times 100}{b}$

This is simply a division sum and is bestaried build upivion

(5) a, b and c expressed as \%ages of their sum, $a+b+c$

We set decimal markers on $\mathbf{S R}, \mathbf{C R}$ and $\mathbf{P R}$, adding 2 for $\mathbf{P R}$ as we require the answers as percentages

We set $a+b+c$ on $\mathbf{S R}$ and build up in furn to a, b and c in $\mathbf{P R}$, without clearing any of the dials.

Example (vi) The cost of a batch of articles is given as follows:-

Direct Wages	$£ 139.14 .0$.
Materials	57.16 .6.
Overheads	112.10 .0.
	$£ 310.0 .6$.

Compute the percentage of each on the total cost, to 2 places of decimals.

	SR	CR	PR
C4	/310.025	/45.06*	/ 139.6972650
		/18.65*	/57.8196625
		/36.29*	/112.5080725
	Answer =	Direct Wages	45.06\%
		Materials	18.65\%
		Overheads	36.29\%
			100.00\%

The carriage position is simply chosen by eye to enable the dividend to be built up correctly. In this case 4 happens to be the best position to start the build up in each case. None of the dials are cleared during the operation. The total of the percentages should, of course, equal 100% with $.01 \%$ either way
fthere is a large number of constituent parts, e.g. more than 5 , it is worth while computing he reciprocal of the sums and multiplying each part by this reciprocal in turn.
Thus, in this example we might compute 100/310.025 by build up division to 100 , btaining .32255. Set this figure on SR and multiply in turn by the three constituent parts, 139.7 .57 .825 and 112.5

AMORTISATION of DEBTS by ANNUITIES

Loans may be repayable in a number of ways but a common method is by equal payments at regular intervals. Such payments may be calculated to repay the loan over a fixed period or the annuities may be a fixed proportion of the loan.
(a) Repayable over a fixed period

Part of the annuity represents interest and part repayment of capital,
A schedule is required showing the amounts outstanding at the end of each period and the interest and capital portions for the next period. The amount of the annuity can be found from an annuity table.

Example:

A loan of $£ 750,000$ on 1.1 .54 , carrying interest at $31 / 2$ is to be repaid by 10 equal payments at half-yearly intervals. The amount is the same as if a $13 / 4 \%$ loan were repayable at yearly intervals. The amortisation factor found from the table is 1098753442 . Multiplying this on the Curta by 75 we obtain the half yearly payment $£ 82,406.51$. We shall leave the figure in decimals.

We enter the half-yearly payment on PR and set the rate of interest on SR We multiply this negatively by the amount of the loan with the Revering Lever down, so that we subtract the interest for the 1 st half year from the half-yearly payment, leaving the capital portion in PR, whilst $\mathbf{C R}$ a shows the amount of the loan. The former is noted down and used to multiply the interest rate, positively, and added to PR

In this way the PR shows the capital value of the annuity for each half year and the CR shows the outstanding amount of the loan at the beginning of the half-year.

The operations on the Curta II are as follows, PR and CR being scheduled at each step. The setting remains constant at the interest rate.

SR
PR
C1 / $1098753442 / 75 \quad / 82,406.508150^{*}$

Clear CR

This gives us the $1 / 2$ yearly payment, $£ 82,406,51$
(7) Increase or Decrease expressed as a percentage of the larger or smaller figure. If b is greater than a
$\%$ increase or decrease on $\left.a=\frac{b-a}{a} \times 100=\frac{(b}{(a}-1\right) 100$
$\%$ increase or decrease on $b=\frac{b-a}{b} \times 100=\left(1-\frac{a)}{b}\right) 100$

We have merely to divide b by a or a by b, either by subtractive division or by build up division. We can make use of the Reversing Lever, either to subtract one from the quotient in the first case, or to give the complement, of $\frac{a}{b}$ on CR in the second case.

Example (viii) The turnover of a business increases from $£ 567,450$ to $£ 786,584$. Find the \%age increase to two places of decimals.

We require $\frac{b-a}{a} \times 100$. Using subtractive division we set 786584 and make one positive furn with Reversing Lever down.

	SR	CR	PR	
C5 R	$/ 78684$	99/	0786584/	Do not clear dials
C5 R	$/ 567450$	$/ 38.62^{*}$	$9 / 848100$	
Answer $=38.62 \%$				

The above operation can also be appreciated in this way. After 567450 has been set and one subtractive turn has been made, we are left with 0 on $C R$ and $b-a$ on PR. We proceed to divide this by a so that we obtain $\frac{b-a}{a}$ on CR

Example (ix) The turnover of a business decreases from $£ 786,584$ to $£ 672,410$ Find the \%age decrease to two places of decimals.

We require $\frac{(b-a)}{b} \times 100$. Using build up division, we set
786584 and build up to a with reversing lever down
SR
PR
C5 /786584 9/14.52* /6723720032

Answer $=14.52 \%$

The rule is therefore: Set the higher of the two figures, with the reversing lever down, and place carriage in position to give required decimal places in answer. If the change is an increase, make one positive turn, set the lower figure and reduce PR to zero. If the change is a decrease, build up to the lower figure
(8) Successive Percentage corrections, $d+a \%+b \%-c \%$, etc. Such calculations are common where prices are fluctuating too rapidly for catalogues to be amended.

Example (x) £5. $14.6+5 \%+12 \frac{1}{2} \%-2 \frac{1}{2} \%$
We can set 5.725 and multiply successively by $1.05,1.125$ and .975 . Using Curta Il and method given in A 1 .

| | SR | CR | PR | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| C1 | $/ 5.725$ | $/ 1.05$ | $/ 6.01125^{*}$ | Clear CR |
| C6 | $/ 1.124$ | $/ 6.01125$ | $/ 6.76265625^{*}$ | Clear CR |
| C8 | $/ 9.740$ | $/ 6.7626562$ | $/ 6.59358979505^{*}$ | |

Answer = £6. 11. 10½.

Note: It is not necessary to clear CR nor to write anything down except the answer. Nor is it necessary to proceed with the last step beyond 4 places on CR in this particular case.

If such successive percentages have to be applied to a number of prices, it is better to work out the equivalent percentage once and for all. Thus, if we multiply 1.05×1.125 fre add this perest 55.14 .6 we get 6.593597 of fo. $11.101 / 2$. as befor

It can be shown that, between successive terms, there is no fraction with a smaller denominator, so that, if we proceed to evaluate the continued fraction until the required accuracy is obtained, we can be sure that we have not left out a fraction as accurate but with a smaller denominator. In this case the successive fractions are $1 / 6,5 / 31$ $11 / 68$, etc.

The method which we are going to describe is simply a way of finding the successive continued fractions automatically with a single setting on the Curta, and at the same time giving the appropriate accuracy check figure so that we can compare it with the 'Remainder' of the numerator and see whether we have obtained the necessary accuracy. A Curta I can be used, but the method will be a little clearer if we use a Curta II

$$
\text { Example (i) Find a gear train to give the ratio . } 16168 \text { With an accuracy }
$$ of $\pm .00002$

Set decimal markers before the 5 th, 8 th and 10 th dials of PR. Set the decimal equivalent of the required fraction on left of SR and the accuracy on the right of SR. (With a Curta I we set decimal markers before the 3rd, 6th and 8th dials. In setting the accuracy, we must leave out the first 2 zeros.) As we turn the handle, the numerator appears on the left of PR and the denominator on CR. The right side of PR shows the accuracy multiplied by the denominato which we will here call the 'accuracy check'. We must turn until the numerato is sufficiently near to a whole number to give the required accuracy, i.e. until either the Remainder given in PR dials 0 - 10 is less than the accuracy check or they are together equal to more than 1 .

Proceed as follows, first making 1 turn at a time until a carry over is made to PR dial 11 .

$$
\begin{aligned}
& \text { No. of turns } \\
& \text { at a time }
\end{aligned}
$$

SR CR
PR
C1 /.16168.00002 /7
/1.13,176,00014

Note the denominator shown in CR and deduct the number of turns made at a time, i.e 1 , giving 6 .

We now proceed to make 6 turns at a time. The Remainder will decrease from 13176 and we continue until the Remainder has been reduced below zero.

Date of Payment			Outstanding Loan	$1 / 2$ Yearly Amortisation	Interest (obtained Later)
		SR	CR	PR	
1.7.54.	C8 R	/1. 75	750,000.00	69,281.51	13,125.00
1.1.55.	C1 R		680,718.49	70,493.93	11,912.58
1.7.55.	C7 R		610,224.56	71,727.58	10,678.93
1.1.56.	C1 R		538,496.98	72,982.81	9,423.70
1.7.56.	C7 R		465,514.17	74,260.01	8,146.50
1.1.57.	C1 R		391,254.16	75,559.56	6,846.95
1.7.57.	C7 R		315,694.60	76,881.85	5,524.66
1.1.58.	C1 R		238,812.75	78,227.29	4,179.22
1.7.58.	C7 R		160,585.46	79,596.26	2,810.25
1.1.59.	C1 R		80,989.20	80.989.20	1,417.31
				£750,000.00	£74,065.10

After the first 9 repayments the $1 / 2$ yearly amortisation figure, $£ 80,989.20$, should equal the outstanding amount of the loan thus proving that the calculations have been made correctly and that the $1 / 2$ yearly amortisation has been written down correctly. There may be a small discrepancy due to rounding off.

To prove the correct writing down of the outstanding amount of the loan, the $1 / 2$ yearly amortisation figures are accumulated, starting with the last and checked with the loan figures, thus the total of the amortisation column should amount to the total of the loan.

The interest figures are obtained by setting the $1 / 2$ yearly payment on $\mathbf{P R}$ and deducting each amortisation figure in turn, restoring PR by a positive turn each time, before setting the next amortisation figure.

If the amount of the loan is not more than 7 figures, these two operations can be performed with a single setting of each amortisation figure, using the one side of PR to accumulate the outstanding loan figures and the other to obtain the interest.

The total of the Interest column should equal the total amount of the amortisation, i.e. $£ 824,065.10$ is less the total of the loan, $£ 750,000$, that is $£ 74,065.10$.

GEAR RATIOS

These notes do not attempt to go into the problems of gear train design, but merely o show the application of the Curta to one type of calculation arising therefrom.

A required ratio may be obtained in the form of a relationship between two quantities, i.e. a proper fraction, e.g. $\frac{27}{167}$, or a decimal fraction, e.g. .16168. It is necessary to express the decimal fraction as a proper fraction to obtain the number of teeth in each gear of the train and, even if the ratio is already expressed as a proper fraction, the denominator or numerator may not factorise and may be too large for practical purposes, as is the denominator in this case, or may require a gear which is ot available. Consequently it may be necessary to find other factors, each within the equired accuracy, one of which will factorise to a convenient number of teeth.

If the accuracy required is not great, the appropriate ratios can be found from a table of ratios, known as a Brocot Table. A table to the base 100 gives the decimal equivalents of all fractions from $99 / 100$ to $1 / 100$ in descending decimal order. A table to any base could, of course, be Constructed but would be cumbersome i an accuracy, say, of 1 in 100,000 were required. There are methods of obtaining additional accuracy from tables of base 100 but they involve the making of a number of separate calculations. Fortunately a very simple method is provided by the Curta for finding a set of fractions to any required degree of accuracy with but a single setting on the Curta

Any fraction can be expressed as a 'Continued Fraction' and a sufficient number of terms may be taken to give any required accuracy. For instance, the fractions given above can be expressed as

```
\frac{1}{6}
    \frac{1}{5}
    \frac{1}{2}}
```

The successive terms give equivalent proper fractions which are alternately greater and less than the required fraction, until, if the fraction is determinate, a zero remainder is obtained.

SIDES of a TRIANGLE - PYTHAGORAS

Draughtsmen and Designers frequently require to find the third side of a righ angled triangle, the other two sides of which are known. This can of course be angled triangle, the other two sides of which are known. This can of course be
evaluated with a slide rule or by log tables, or tables of squares and square roots, bu greater speed with less effort and less danger of error can be achieved with the Curta

The operation consists of finding $C=\sqrt{ }\left(a^{2} \pm b^{2}\right)$. We set ' a ' on SR and square. We now set ' b ' on $\mathbf{S R}$ and square with either positive or negative turns of the handle. This gives us the radicand, $a^{2} \pm b^{2}$, on $\mathbf{P R}$. We find the square root by one of the methods given in Section M 1. If we already know the approximate value of C, Sabielny's method (3) is probably the quickest, otherwise method (5), using Table 101, will probably be found the simplest.

Example (i) Find the third side of the triangle given below

	SR	CR	PR	
C1	$/ 11.392$	$/ 11.392$	$/ 129.777664^{*}$	Clear CR
C1 R	$/ 5.975$	$/ 5.975$	$/ 94.077039^{*}$	Clear CR

Using Table 101, set the nearest figure for R^{2}

	SR	CR	PR
C1	/94.259600	/1	188.336639*
Multiply PR by 575			
	SR	CR	PR
C6	0.0514/	188337	9.6993554639*

	CR PR		No. of turns at a time
Cl	/37	/5, 98,216.00074	6
Write			37

and deduct the previous number 6 obtaining for the next number of turns 31 ie. 1 turn in Cl and 3 turns in C 2 . The Remainder will now increase.
Thus we proceed with the remainder alternately increasing and decreasing towards zero until either the Remainder is less than the accuracy check or the sum is greater than 1. It is clear that PR dials 9 and 10 must either show 00 or 99 , and if this occurs, we check dials 6.7 and 8 with 1.2 and 3 ,

	$C R$	PR	
C1	$/ 99$	$/ 16.00,632,00198$	31
			99
C1	$/ 167^{*}$	$/ 27^{*} .00,056.00334$	68

We now have sufficient accuracy since 56 is less than 334 so that $27 / 167$ will give the equired accuracy, but we must go on, since 167 is a prime number.

C1	$/ 235^{*}$	$/ 37^{*} .99,480.00470$	68
			235
C1	$/ 402^{*}$	$/ 64^{*} .99,536.00804$	167
C1	$/ 569^{*}$	$191^{*} .99,592.01138$	167
C1	$/ 736^{*}$	$118^{*} .99,648.01472$	167

and so on.

We thus obtain a series of fractions, all sufficiently
accurate, $\frac{27}{167}, \frac{65}{402}, \frac{92}{569}, \frac{119}{736}$, etc.

The second, $\frac{65}{402}$ factorises as $\frac{5 \times 13}{2 \times 3 \times 67}$ so that we might use
as our gear train say $\frac{5}{6} \times \frac{13}{67}$.

If this is not suitable, e.g. because there are too few teeth in the first pair, it is generally not desirable to multiply top and bottom by a common factor and we may require a further fraction. The denominator 569 is a prime number, as can be found from a table of factors, but $\frac{119}{736}$ factorises into $\frac{7 \times 17}{2^{5} \times 23}$

We might therefore use $\frac{7}{23} \times \frac{17}{32}$ or $\frac{14}{23} \times \frac{17}{64}$, etc.

Note that the number of furns made at a time, shown in the right hand column above, are the denominators of the successive continued fractions, $\frac{1}{6}, \frac{5}{31}, \frac{11}{68}, \frac{27}{167}$

Example (ii) Find a gear train to give the ratio . 2905 within an accuracy of $\pm .00003$

	SR	cr	Pr \quad der	No. of turns at a time
Cl	/.29050.00003	/4	/1.16,200.00012	1
		/10	/2.90,500.00030	3
				10
		/31	/9.00,550.00053	7
				31
		$/ 55$	/15.97,750.00165	24
				55
		/179	/51 *.99,950,00537	31
		/210	161*.00,500.00630	31
				210
		/389	/113*.00,450.01167	179

$$
\begin{aligned}
& \text { We thus have the fractions } \frac{52}{179}, \frac{61}{210}, \frac{113}{389} \text {, etc. } \\
& \text { As } 179 \text { is a prime number and too high, the first is no use. } \\
& \text { The second factorises as } \frac{61}{2 \times 3 \times 5 \times 7} \text {, } \\
& \text { so that we might use } \frac{61}{100} \times \frac{10}{21} \text { and various other combinations. }
\end{aligned}
$$

It is desirable to write down the denominators when the Remainders change sign, deducting the previous number of turns required to be made in order to find the next number of furns required to be made at a time, as in the right hand column above, but no other figures need be written down, except the accurate fractions.

With a little practice, a series of fractions can be obtained with great rapidity. Short-cutting should be used and where a Remainder approaches zero slowly, we may turn through a multiple of the indicated number of turns; e.g. where 8 turns at a time are indicated, we might turn immediately through 4 turns in the 2 nd position of the carriage (40 turns), proceeding thereafter with 8 turns in the 1 st position.

SQUARE ROOTS

There are various ways of finding square roots on the Curta, either with or withou some other aid such as tables or a slide rule. Each method has merits according to circumstances
(1) Toplers Method - Using the arithmetic series $1+3+5+7+\ldots$ This method is described in 'Instructions for the Use of the Curta'. It is comparatively slow but is simple and requires no outside aids. We give here one example in our abbreviated notation.

Example: $457.3151 / 2$

In all methods we divide the Radicand into groups of 2 digits from the decima point. We build up to the first group, 4, by setting 1 and then 3 on $\mathbf{S R}$ and making one furn for each. We then increase SR by 1 and move the carriage down one place and commence building by the series again. Thus, with Model I:-

C6	001/	1/*	1/
	003/	2/*	4/
C5	0041/	21/*	441/
C4	0042.1/	21.1/*	445.21/
	0042.3/	21.2/*	449.44/
	0042.5/	21.3/*	453.69/
C3	0042.61/	21.31/*	454.1161 / and so on
 SR at each step
	0042.75/	21.38/*	457.1 C44/
C2	0042.761/	21.381/*	457.147161

	0042767/	21.384/*	457.275456/
Cl	0042.7681/	21.3841/*	457.27973281

	0042.7697	21.3849*	457.31394801

Thus the answer to six significant figures is $\mathbf{2 1 . 3 8 4 9}$
Notice that if we add a further 1 to SR, SR is twice CR. This proves that we have made the calculation correctly, and should always, be checked.

When the measurements are expressed in fractions of an inch, e.g. $837 / 64^{\prime \prime}$, we merely convert them to 64 ths, thus, multiply 8 mentally by 64 and set on $\mathbf{S R}$, then add 37 by changing the setting levers.

Example (ii) Find the third side of the triangle given below

	SR	CR	PR	
C1	$/ 549$	$/ 549$	$/ 301401^{*}$	Clear CR
C1	$/ \mathbf{2 6 9}$	$/ \mathbf{2 6 9}$	$/ 373762^{*}$	Clear CR

Find square root by Table 101

	SR	CR	PR	
C1	$/ 372711$	$/ 1$	$/ 746473^{*}$	Clear CR
C6	$/ 818$	$/ 7464.73$	$/ 611.361387^{*}$	Clear CR

Now divide by 64

	SR	CR	PR
C1	64/	/9*	$/ 35361387$

HEAT INSULATION

There are several calculations involved in Heat Insulation, problems which can be solved speedily on the Curta Model II, using a method similar to those set out in A 5 for the accumulation of quotients. For instance, the heat loss, q, in BTU's per foot run of pipe, ignoring resistance of the steel pipe, is given by
$q=\frac{\pi\left(t_{1}-t_{2}\right)}{\frac{1}{2 K_{1}} \log _{e} \frac{d_{1}}{d}+\frac{1}{2 K_{2}} \log _{e} \frac{d_{2}}{d_{1}}+\frac{1}{2 K_{n}} \log _{e} \frac{D}{d_{n-1}}+\frac{1}{E \times D}}$

[^0]Example: $t_{1}=650^{\circ} \mathrm{F}, t_{2}=70^{\circ} \mathrm{F}$
Insulation of $6 \frac{1}{2} 2^{\prime \prime}$ outside diameter pipe is $1 / 2^{\prime \prime}$ H. T. R., $2^{\prime \prime}$ Nag and $1 / 2^{\prime \prime} \mathrm{H} . \mathrm{S}$.,
so that $d=6.5, d_{1}=7.5, d_{2}=11.5, D=12.5$, and $2 K_{1}=.096,2 K_{2}=.082$
and $2 K_{3}=.150$.
$\frac{1}{C}=6.67$

Thus the amount to be computed is:

$$
q=\frac{580 \pi}{\frac{1}{.096} \log _{e} \frac{7.5}{6.5}+\frac{1}{.082} \log _{e} \frac{11.5}{7.5}+\frac{1}{.150} \log _{e} \frac{12.5}{11.5}+\frac{6.67}{12.5}}
$$

We set $\log _{e} 6.5$ on left of SR with carriage in position 1 and turn one subtractive furn. Then set $\log _{e} 7.5$ and one positive turn bringing $\log _{e} \frac{d_{1}}{d}$ on to PR. We set $2 K_{1}$, i.e. . 096 on right of $\mathbf{S R}$ and divide by subtraction with Reversing Lever down bringing quotient on CR. In this way we sum the quotient of the K terms, then set Reversing Lever up and add on the last quotient by setting D on SR and building up to 6.667. Finally we reset the accumulated quotients on right of $\mathbf{S R}$ with $t_{l}-t_{2}$, i.e. 580 , set on the left and build up to $\pi_{\text {, }}$ abtaining the answer on the left of PR, thus:

	SR	CR	PR	
C1 R	01.8718/	/1	9/8128200000*	
C1 R	02.0149/	10	/143100000*	
C7 R	02.0149//.096	01.491/*9/64000	Clear PR
C1 R	02.0149/	01.491//1	9/7985100000*	
C1 R	02.4424/	01.491/	/427500000*	
C7 R	02.4424//.082	06.704/*	.../34000	Clear PR
C1 R	02.4424/	06.704//1	9/7557600000*	
C1 R	02.5257/	06.704/	/83300000*	
C6 R	02.5257/.150	07.259/*/50000	Clear PR
C6	/ 12.500	07.792*	/6.662500000	

Reset CR on right of SR , clear CR and PR , set 580 on left of SR and build up to to π (3.1416) on right of PR

C4 580//7.792 233856031417344

Answer $=234$ BTU's.

In this method, each logarithm has only to be set once and no figures need be written rean except the answer To check the calculation it should be perfor oesin in reverse order. The right hand quotient will be obtained by build-up division, then the Reversing Lever will be pushed down, $\log _{e} D$ set with one positive furn and $\log _{e} d_{n-1}$ subtracted, the difference divided by $2 K_{n}$ and so on for the other terms

Finally we have the accumulation of the quotients on CR. Set the answer, already obtained, on SR and bring CR to zero by positive turns. Divide by 580 and check that we have π on CR.

CURTA TABLE No. 101
SQUARE ROOTS $N=\left(N^{2}+R^{2}\right) / 2 R$ for 5 -FIGURE ROO

R^{2}	1/2R	R^{2}	1/2R	R^{2}	1/2R
1.00000	500	3.50685	267	8.45051	172
1.03700	491	3.58701	264	8.65052	170
1.07608	482	3.66994	261	8.75319	169
1.11742	473	3.75578	258	8.85771	168
1.16119	464	3.84468	255	8.96411	167
1.20229	456	3.93676	252	9.07243	166
1.24561	448	4.03219	249	9.18274	165
1.29132	440	4.13114	246	9.29506	164
1.33959	432	4.23377	243	9.40946	163
1.38408	425	4.34028	240	9.52599	162
1.43083	418	4.45085	237	9.64469	161
1.47998	411	4.56571	234	9.76563	160
1.53171	404	4.68507	231	9.88885	159
1.58620	397	4.80917	228	10.0144	158
1.64365	390	4.93827	225	10.1424	157
1.69542	384	5.07264	222	10.2729	156
1.74967	378	5.16529	220	10.4058	155
1.80657	372	5.26050	218	10.5414	154
1.86628	366	5.35837	216	10.6797	153
1.92901	360	5.45899	214	10.8206	152
1.99496	354	5.56248	212	10.9644	151
2.05253	349	5.66893	210	11.1111	150
2.11263	344	5.77848	208	11.2607	149
2.17541	339	5.89122	206	11.4134	148
2.24103	3.4	6.00730	204	11.5693	147
2.30966	329	6.12685	202	11.7283	146
2.38150	324	6.25000	200	11.8906	145
2.45674	319	6.37690	198	12.0563	144
2.53560	314	6.50770	196	12.2255	143
2.60146	310	6.64258	194	12.3983	142
2.66991	306	6.78168	192	12.5748	141
2.7411	302	6.92521	190	12.7551	140
2.81519	298	7.07334	188	12.9393	139
2.89231	294	7.22627	186	13.1275	138
2.97265	290	7.38422	184	13.3198	137
3.05638	286	7.54740	182	13.5164	136
3.14371	282	7.71605	180	13.7174	135
3.23482	278	7.89042	178	13.9229	134
3.32996	274	8.07076	176	14.1331	133
3.42936	270	8.25737	174	14.3480	132

After the first 4 digits, 2138 , i.e. half the significant figures required plus 1 , have been obtained, it is no longer necessary to proceed with the series $1+3+5$ etc., as the $\mathbf{S R}$ is sufficiently accurate. We may proceed simply to build up the PR as nearly as possible to the Radicand, moving the carriage as necessary, thus:

	SR	CR	PR
C2	0042.76/	$21.384 / *$	$457.27544 /$
C1		$21.3849 / *$	$457.313924 /$

(2) Herrmann's Method

This is also given in 'Instructions for Use of the Curta'. If R is an approximate root of N^{2}, we may put $N=R+d$ where d is small.
Hence $N^{2}=R^{2}+2 R d+d^{2}$ or ignoring d^{2} and substituting $N-R$ for d, we get $N=\left(N^{2}+R^{2}\right) / 2 R$

We may also express this as $N=R+\frac{N^{2}-R^{2}}{2 R}$

$$
\text { or as } N=1 / 2\left(\frac{N^{2}}{R}+R\right)
$$

In each case N gives us a second order approximation, accurate to twice as many figures as R.

Herrmann's Method uses the second of these expressions.
If we set R on $\mathbf{S R}$, square it, obtaining R^{2} in $\mathbf{P R}$ and R in $\mathbf{C R}$, and then set $2 R$ on $\mathbf{S R}$, building up (or reducing) PR to N^{2} (the Radicand),
we shall have $R+\frac{N^{2}-R^{2}}{2 R}$ on $\mathbf{C R}$
Example: 457.315½
Suppose we find the root of 457, on a slide rule, to be 21.4,

	SR	CR	PR	
C6	0021.4/	21.4/	457.96/*	
C3	0042.8/	21.3849/*	457.31372/	

In the same way we could find 12 significant figures by squaring 21.3849, obtaining 457.31394801 , set 42.7698 and build up the 6 right hand digits to 500000 .

On Curta lit is necessary to clear PR and re-set 394801 /.

With Curta II the steps are

	SR	CR	PR	
C8	21.3849/	21.3849/	.31394801/*	Clear CR
C7	42.7696	/2459656*	. 314999999951888	

This method is quicker than Method (1), though perhaps it is rather easier to make a mistake
(3) Sabielny's Method

This uses the expression $N=1 / 2\left(\frac{N^{2}}{R}+R\right)$
A root R is guessed, or found on a slide rule or from tables, and this is divided into N^{2}. The mean of the quotient and R gives the second order approximation.

Example: $457.315^{1 / 2}$

Obtain 214 as an approximate root, as in method (1)

	SR	CR	PR
C6	$/ \mathbf{2 1 4 0 0 0}$	213699*	45731586/

Answer $=21.3849$

This is slightly quicker than Hermann's Method but needs perhaps a little
more mental effort. more mental effort.
(4) Classical Method

This is the method normally taught in elementary school arithmetic. The method is speedy and no outside aids are required, but it needs rather more menta effort than the foregoing methods.

We set the radicand on PR, set the approximate root on the left hand group, or the nearest figure below it, say x, and subtract it x times. We add x, move the carriage to the next position and set a figure y in the next column so that if we subtract y times, we shall not reduce PR below zero. Then we add y and carry on as before.

Example:	457.3151/2			
	SR		CR	PR
C6	/457.315		1/	457.315/
	$/ 20.0000$		2/*	057.315/
C5	$/ 41.0000$	R	21/*	016.315/
C4	$/ 42.3000$	R	21.3/*	003.625/
C3	/42.6800	R	21.38/*	000.2106/

Clear CR

As in method (1) the setting on SR is sufficiently accurate and we need merely reduce PR to zero. Notice that it we add the last setting, 8, he SR will be twice CR, as in Method (1).
C2 /42.7600 R 21.3849* / 107600

Answer $=21.3849$
(5) Using Curta Table 10

This method uses the expression $N=\frac{N^{2}-R^{2}}{2 R}$
Table 101 gives a column for R^{2} and one for $\frac{1}{2} R$, the latter being spaced at intervals calculated to give 5 figure accuracy to the answer.

We set the radicand on PR, add the nearest figure to the radicand, taken from Table 101, thus obtaining $N^{2}+R^{2}$ on PR, and multiply this by the corresponding value of $\frac{1}{2} R$ by the method of successive multiplication.
See A 1 .

Example: $457.315^{1 ⁄ 2} 2$

	SR	CR	PR	
C1	/457.315	/1	/457.315	
	/456.571	/2	/913.886	Clear CR
C6	/. 0233	913.886	/21.3849324*	

This method is very rapid if a 5 figure root is sufficient and requires little mental effort. In practise it is unnecessary to clear CR.

CURTA TABLE No. 102
CUBE ROOTS $-N=\left(N^{3}+R^{3}\right) / 3 R^{2}$ for 5-FIGURE ROOT
Copyright Strictly Reserved By London Office Machines Ltd.

R^{3}	$1 / 3 R^{2}$	R^{3}	$1 / 3 R^{2}$	R^{3}	$1 / 3 R^{2}$
1.00150	(.) 333	4.40742	124	15.2940	541
1.04352	316	4.51625	122	15.6838	532
1.08340	324	4.62963	120	16.0904	523
1.12588	308	4.74783	118	16.5148	514
1.17122	300	4.87114	116	16.9080	506
1.21967	292	4.99989	114	17.3171	498
1.26488	285	5.13442	112	17.7429	490
1.31296	278	5.27508	110	18.1864	482
1.36416	271	5.42228	108	18.6488	474
1.41877	264	5.57647	106	19.1311	466
1.46855	258	5.73810	104	19.5704	459
1.52131	252	5.90769	102	20.0267	452
1.57730	246	6.08580	100	20.5011	445
1.63682	240	6.27305	(.0)980	20.9946	438
1.70018	234	6.47010	960	21.5081	431
1.75616	229	6.66705	941	22.0429	424
1.81528	224	6.87419	922	22.6003	417
187781	219	7.08052	904	23.0970	411
1.94400	214	7.29739	886	23.6121	405
2.01418	209	7.51257	869	24.1467	399
2.08868	204	7.73853	852	24.7018	393
2.15166	200	7.96175	836	25.2785	387
2.21786	196	8.19591	820	25.878 ○	381
2.28753	192	8.44178	804	26.5015	375
2.36092	188	8.68365	789	27.1505	369
2.43832	184	8.93730	774	27.7119	364
2.52005	180	9.20355	759	28.2928	359
2.60645	176	9.46420	745	28.8944	354
2.69790	172	9.73738	731	29.5176	349
2.79482	168	10.0240	717	30.1634	344
2.87139	165	10.3029	704	30.8332	339
2.95152	162	10.5950	691	31.5281	334
3.03545	159	10.9012	678	32.2496	329
3.12343	156	11.1971	666	32.9990	324
3.21574	153	11.5067	654	33.7778	319
3.31269	150	11.8308	642	34.4233	315
3.41162	147	12.1415	631	35.0895	311
3.52188	144	12.4661	620	35.7775	307
3.63487	141	12.8054	609	36.4883	303
3.75404	138	13.1603	598	37.2230	299
3.87987	135	13.4975	588	37.9826	295
4.01289	132	13.8493	578	38.7684	291
4.10584	130	14.2166	568	39.5817	287
4.20246	128	11.5613	559	40.4239	283
4.30291	126	14.9202	550	41.2964	279

Copyright Strictly Reserved by London Office Machines Ltd.

R^{2}	1/2R	R^{2}	1/2R	R^{2}	1/2R
14.5679	131	31.0018	898	60.2793	644
14.7929	130	31.4909	891	61.0352	640
15.0231	129	31.9916	884	61.8053	636
15.2588	128	32.5043	877	62.5901	632
15.5000	127	33.0295	870	63.3900	628
15.7470	126	33.5675	863	64.2053	624
16.0000	125	34.1187	856	65.0364	620
16.2591	124	34.6836	849	65.8838	616
16.5246	123	35.1791	843	66.7478	612
16.7966	122	35.6853	837	67.6290	608
17.0753	121	36.2024	831	68.5277	604
17.3611	120	36.7309	825	69.4444	600
17.6541	119	37.2711	819	70.3797	596
17.9546	118	37.8233	813	71.3340	592
18.2628	117	38.3878	807	72.3078	588
18.5791	116	38.9650	801	73.3017	584
18.9036	115	39.5554	795	74.0607	581
19.2367	114	40.1593	789	74.8315	578
19.5787	113	40.7771	783	75.6144	575
19.9299	112	41.4093	777	76.4096	572
20.2906	111	42.0563	771	77.2175	569
20.6612	110	42.7186	765	78.0382	566
21.0420	109	43.2825	760	78.8721	563
21.4335	108	43.8577	755	79.7194	560
21.8360	107	45.6538	740	80.5804	557
22.2080	1061	46.2770	735	81.4555	554
22.5896	1052	46.9131	730	82.3449	551
22.9811	1043	47.5624	725	83.2490	548
23.3829	1034	48.2253	720	84.1680	545
23.7954	1025	48.9021	715	85.1023	542
24.2188	1016	49.5933	710	86.0523	539
24.6536	1007	50.2993	705	87.0183	536
25.1003	998	51.0204	700	88.0006	533
25.5076	990	51.7572	695	88.9996	530
25.9249	982	52.5100	690	90.0158	527
26.3525	974	53.2793	685	91.0495	524
26.7908	966	54.0657	680	92.1010	521
27.2401	958	54.7075	676	93.1709	518
27.7008	950	55.3607	672	94.2596	515
28.1733	942	56.0257	668	95.3674	512
28.6580	934	56.7027	664	96.4949	509
29.1553	926	57.3921	660	97.6425	506
29.6012	919	58.0941	656	98.8107	503
30.0573	912	58.8091	652	99.2048	502
30.5241	905	59.5374	648	100.0000	500

CUBE ROOTS

The method of finding cube roots on the Curta is very similar to Method (5) for quare roots. We use Curta Table 102

If R is an approximate cube root of N^{3}, we may put
$N=R+d$, where d is small. Thus $N^{3}=R^{3}+3 R^{2} d+3 R d^{2}+d^{3}$
and if we ignore $d^{2} \& d^{3}$ and substitute $N-R$ for d we get
$N=\frac{N^{3}+R^{2}}{3 R^{3}}$ as a second order approximation for N.
Table 102 gives a column for N^{3} and one for $\frac{1}{3 R^{2}}$, the latter being spaced at intervals calculated to give 5 figure accuracy to the answer. The table is arranged in groups of 3 figures from the decimal point

Example: 457.315½

	SR	CR	PR	
C1	$/ 457.315$	$/ 1$	$/ 457.315$	
	$/ 456787$	$/ 3$	$/ 1370.889$	Clear CR
C6	$/ .005610$	1370.89	$/ 7.70440179$	

Answer $=7.7044$

CUBIC EQUATIONS

Using similar notation to that used for square and cube roots in $\mathbf{M} \mathbf{1}$ and $\mathbf{2}$, any cubic equation can be reduced to the form

$$
N^{3}+a N=b \ldots \ldots \ldots \ldots \ldots \ldots \ldots
$$

If R is an approximate solution so that $N=R+d$, where d is small,
$(R+d)^{3}+a(R+d)=b$, and ignoring $d^{2}+d^{3}$
$R^{3}+3 R^{2} d+a N=b$

Substituting $N-R$ for $d, R^{3}+3 R^{2} N-3 R^{3}+a N=b$
and $N=\frac{b+2 R^{3}}{a+3 R^{3}}$ \qquad (2)

Thus, if an approximate root, R, has been found, a second order approximation can be found from equation (2) and thus any desired accuracy can be obtained by successive approximations.

Example: Find the real roots of $N^{3}+2 N=8$ \qquad (3)

An approximate root lies between 1.5 and 2, say 1.75
Set 8 on PR, 2 on $\mathbf{S R}$ and multiply by -1.75 obtaining for $N^{3}, 4.50$
From a table of squares and cubes, e.g. Barlows', we find N^{3} should be 5.359375 , so that 1.75 is too large.

We therefore turn the handle positively until we get 4.660 on PR for 1.670 on CR for which N^{3}, i.e. $1.67^{3}=4.657463$. This is as near as we can get to 4 significant figures.

From equation (2) we have a second approximation
$N=\frac{8+2(1.670)^{3}}{2+3(1.670)^{2}}=\frac{8+2 \times 4.657463}{2+3 \times 2.7889}$ (from the tables)
$=1.6702447$

R^{3}		1/3R ${ }^{2}$	R^{3}	$1 / 3 R^{2}$	R^{3}	$1 / 3 R^{2}$	R^{3}	$1 / 3 R^{2}$
42.200	6	(.0)275	106.887	148	216.324	925	489.054	537
43.138	4	271	107.980	147	219.880	915	495.965	532
44.11	5	267	109.091	146	223.535	905	503.040	527
44.865	4	264	110.222	145	227.292	895	510.285	522
45.641	2	261	111.372	144	231.155	885	517.705	517
46.438	6	258	112.542	143	235.129	875	525.307	512
47.261	5	255	113.733	142	238.803	866	533.097	507
48.108	0	252	114.944	141	242.575	857	541.081	502
48.980	0	249	116.179	140	246.447	848	547.614	498
49.878	7	246	117.434	139	250.423	839	554.278	494
50.805	2	243	118.713	138	254.507	830	561.078	490
51.760	8	240	120.015	137	258.704	821	568.020	486
52.746	8	237	121.342	136	263.017	812	575.106	482
53.746	3	234	122.692	135	266.952	804	582.340	478
54.815	1	231	124.068	134	270.987	796	589.726	474
55.900	5	228	125.470	133	275.124	788	597.271	470
57.022	2	225	126.898	132	279.367	780	604.978	466
58.182	0	222	128.354	131	283.121	772	612.851	462
59.381	6	219	129.838	130	288.189	764	620.897	458
60.623	0	216	131.351	129	292.776	756	629.122	454
61.908	2	213	132.893	128	296.890	749	637.528	450
63.239	6	210	134.466	127	301.101	742	646.124	446
64.153	9	208	136.070	126	305.412	735	654.914	442
65.090	4	206	137.706	125	309.828	728	663.907	438
66:050	0	204	139.375	124	314.351	721	673.106	434
67.033	4	202	141.078	123	318.985	714	682.520	430
68.041	4	200	142.816	122	323.734	707	692.155	426
69.074	9	198	144.590	121	328.602	700	702.020	422
70.134	8	196	146.401	120	333.594	693	709.573	419
71.222	2	194	148.250	119	338.713	686	717.263	416
72.338	0	192	150.139	118	343.964	679	725.092	413
73.483	1	190	152.068	117	349.352	672	733.064	410
74.658	9	188	154.039	116	354.883	665	741.184	407
75.866	3	186	156.053	115	359.741	659	749.455	404
77.106	6	184	158.111	114	364.710	653	757.882	401
78.381	0	182	160.214	113	369.795	647	766.467	398
79.691	0	180	162.265	112	375.000	641	775.215	395
81.037	9	178	164.564	11	380.327	635	784.131	392
82.423	1	176	166.813	110	385.782	629	793.220	389
83.848	3	174	169.113	109	391.369	623	802.485	386
85.315	0	172	171.467	108	397.091	617	811.932	383
86.825	0	170	173.877	107	402.955	611	821.566	380
88.380	1	168	176.343	106	408.964	605	831.392	377
89.982	1	166	178.868	105	415.124	599	841.416	374
91.633	1	164	181.454	104	421.440	593	851.642	371
93.335	2	162	184.103	103	427.918	587	862.078	368
95.090	7	160	186.817	102	433.445	582	872.727	365
96.901	9	158	189.599	101	439.091	577	883.599	362
98.771	4	156	192.450	100	444.861	572	894.698	359
100.702		154	195.669	(.00)989	450.758	567	906.031	356
101.692		153	198.980	978	456.787	562	917.605	353
102.696		152	202.385	967	462.952	557	929.429	350
103.718		151	205.888	956	469.256	552	941.508	347
104.756		150	209.493	945	475.704	547	953.851	344
105.813		149	212.863	935	482.302	542	966.466	341
							979.361	338 335

FRACTIONAL POWERS of NUMBERS

Fractional Powers, other than square and cube roots, fourth roots, etc., for practica purposes, cannot be found directly on a calculating machine. However, the Curta will be found very useful when used in conjunction with log tables.

For instance, if a number of quantities have to be raised to the same fractional power, the power can be set on SR. The log of each number in turn is looked up in the tables and turned into the $\mathbf{C R}$. The antilog of the resultant PR is looked up in the tables.

Example: 1.42125
5.395 Using Curta II

SR CR PR
C1 /1.42125 .7319914/ 01.04034277725/*

Answer (from 7 figure log tables) $=10.97344$

The advantages of using a calculating machine are that the power can be set on the machine once for all similar computations and only the answer need be written down. The special advantage of tho Curta is that it can be held aver the log tables during the work facilitating the reading of the antilog and reducing the chance of error

QUADRATIC EQUATIONS

Any quadratic equation can be expressed in the form

$$
x^{2}+a x+b=0
$$

the roots of which are:-

$$
1 / 2\left(-a \pm\left(a^{2}-4 b\right)^{1 / 2}\right)
$$

The square root of $a^{2}-4 b$ can, of course, be found on a Curta by one of the methods indicated in $\mathbf{M} \mathbf{1}$ and the roots of the quadratic computed in this manner. If, however, a^{2} is very large in relation to $4 b$, one of the roots will be the difference between two nearly equal quantities and too few significant figures may be given unless the square root of $a^{2}-4 b$ is computed to a very large number of figures.

In such cases, the root can be found very quickly to 6 significant figures on Curta I and 8 significant figures on Curta II merely by a process of division.

If the roots are real, $-a$ is one approximate root and $-b \div a$ the other. Second approximations are given by $-a+b \div a$ and $\frac{b}{-a+b \div a}$

Example: $\quad x^{2}-152 x+3=0$
Using Curta II
One approximate root is $3 \div 152$
Another is $152-3 \div 152$

A closer approximation of the 1 st root is $3 \div(152-3 \div 152)$ Using build up division but with Reversing Lever down to give complement of quotient.

	SR	CR	PR	
C7 R	$/ 152$	$98026 / *$	$/ 300048000$	Clear dials
C8	$/ 151.98026$	19739406^{*}	300000005612556	

One root is therefore . 019739406

The other is 152 , less the above root, i.e. 151.980260594

ACCUMULATION of PRODUCTS

There are many problems in which it is necessary to sum the products $\sum x y$ and $\sum x z$ of two sets of quantities y and z multiplied by a third set of quantities x, which also has of two sets of quantities y and z multiplied by a third sef of quantities x, which also has
to be summed. All three sums can be evaluated simultaneously on the Curta. We set y on the left of $\mathbf{S R}, z$ on the right and multiply by x. If none of the dials are cleared, we obtain $\sum x y$ on the left of $\mathbf{P R}, \sum x z$ on the right and Σx on $\mathbf{C R}$. It is desirable, of course to check the latter with the sum of the x 's found by some other means, e.g. mentally o by adding-listing machine.

Example: Evaluate E given by the following equation:-
$\mathrm{E}=\underline{30260 \Sigma\left(f_{\lambda} E_{\lambda}\right)+9,531 \Sigma\left(\lambda E_{\lambda}\right)-27047,861 \Sigma\left(E_{\lambda}\right)}$
where λ, f_{λ}, and E_{λ}, are given by the following table

λ	f_{λ}	E_{λ}
300	.553	1.34
305	.669	1.54
310	.811	1.76
315	.893	2.03
320	.936	2.16
325	1.000	2.26
330	.982	2.22
335	.888	2.03
340	.790	1.80
345	.667	1.57
350	.517	1.34

Note: This example has been kindly supplied by the Physical Department of Beecham Research Laboratories Ltd. as a sample of the usefulness of the Curta Model II in accumulating two products and one multiplier simultaneously. The computation is used in the calculation of vitamin A content in percomorph liver oil, from ultra violet absorption spectra. Any readers who would like to examine the complete system of analysis computation may obtain full details from London Automatic Business Machines Ltd., 15 Cromwell Road, London SW7.

Dividing $N^{3}+2 N-8$ by $N-1.6702447$
we get $N^{2}+1.6702447 N+4.7897174=0$
the roots of which are imaginary.
So our only real root is 1.6702447 .
Using a Curta II, the operations are as follows:-

	SR	CR	PR	
C8	0008/	1/	8/*	Clear CR
C8 R	R 0002/	1.75/*	4.50	Clear CR \& PR
C4	8/	1/1000	08/*	
	4.657463/	/3000	17.314926/*	
C1	/2.7889	/3003	17.314926:008.3667*	
	/2.0000	/3004	7.314926:010.3667*	Clear CR
	R / 10.366700	/1.6702447*	/2788767	
Answer = 1.6702447				

In making the above calculation we have used each side of the PR to accumulate numerator and denominator of N. The CR figures are meaningless after the 2nd step until the last step as there is no necessity to clear CR.

SUMMATION of SQUARES

In many statistical and other problems it is necessary to sum the squares of a number of quantities, $\sum x^{2}$. Frequently it is also necessary to sum the quantities themselves, Σx Both summations can be performed simultaneously on the Curta, preferably on mode II, since on that machine the multiplier can be checked at each step of the operation.

We set the figure ' 1 ' on the left hand setting dial and x on the right of SR. Multiply by x so that x^{2} appears on the right side of $\mathbf{P R}$ and x, both on the left of $\mathbf{P R}$ and on $\mathbf{C R}$ We can either check and clear $\mathbf{C R}$, accumulating $\sum x$ on the left of $\mathbf{P R}$, or check and clear the left side of $\mathbf{P R}$ (returning the clearing lever to the left side of $\mathbf{P R}$) accumulating Σx on $\mathbf{C R}$. In either case $\sum x^{2}$ is accumulated on the right of $\mathbf{P R}$. Generally the second method is the best if a large number of quantities has to be squared and summed, since it is easier to check the multiplier on the left of PR, whilst CR provides a larger capacity for summing the quantities. On the other hand, when further operations have to be performed on $\sum x^{2}$, the former method may have advantages.

Example: Find the standard deviation of the following quantities: -
$239,1347,1196,0985,1082$.
The standard deviation is given by: $S=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n}}$, where \bar{x} is the arithmetic mean of the quantities. This is more conveniently evaluated as $S=\frac{1}{n} \sqrt{n \sum x^{2}-\left(\sum x\right)^{2}}$, so that we must find Σx^{2} and Σx

The steps on Curta Il are as follows:-

	SR	CR	PR	
C1	$1 / / 1239$	$/ 1239$	$01239 / / 1535121^{*}$	Clear CR
C1	$1 / / 1347$	$/ 1347$	$02586 / / 3349.530^{*}$	Clear CR
C1	$1 / / 1196$	$/ 1196$	$03782 / / 4779946^{*}$	Clear CR
C1	$1 / / 0985$	$/ 0985$	$04767 / / 5750171^{*}$	Clear CR
C1	$1 / / 1082$	$/ 1082$	$05849 / / 6920895^{*}$	Clear CR

We now multiply the right side of PR by 5, by successive multiplication.
C7 /4
CR
PR

Then deduct the square of 5849 from right side of $P R$

	SR	CR	PR

Next find the square root of 393674 by method M 1.(5) using Table 101.

	${ }^{\text {SR }}$	CR	PR	
C1	$/ 395554$	$/ 1^{*}$	$/ 789228^{*}$	Clear CR
C6	$/ 794$	$/ 789228$	$/ 627.436260^{*}$	Clear CR

Now divide by 5

	SR	CR	PR
C8	$125.487 / *$	$/ \mathbf{1 2 6 0}$	

Note: Since the original observations included no decimal places, we cannot get greater accuracy in the standard deviation, unless of course the quantities were integers. We can thus take the standard deviation as 125 .

Of course the number of squares to be summed will normally be many more than 5 but the principle is identical.

EVALUATION of SERIES

Convergent series of form $\frac{a_{1}}{a_{2}}+\frac{a_{1}}{a_{2}}, \frac{b_{1}}{b_{2}}+\frac{a_{1}}{a_{2}}, \frac{b_{1}}{b_{2}}, \frac{c_{1}}{c_{2}}$, etc. can be evaluated on Curta II in a continuous operation.

We split $\mathbf{S R}$ and $\mathbf{P R}$, and set a_{1} on the left of $\mathbf{S R}$ and a_{2} on the right. If we build up to 1 on the left of PR, we shall obtain $\frac{a_{1}}{a_{2}}$ on the right. We may either clear the left side of PR or build up to 1 to the left of the 15 th dial of PR, i.e. off the register. So we now have 0 on the left and the 1 st term of the series on the right of $\mathbf{P R}$.

We change the settings to b_{1} and b_{2} and build up the left hand side of PR to the amount which showed on the right hand side, i.e. $\frac{a_{1}}{a_{2}}$. Thus we add $\frac{a_{1}}{a_{2}} \times \frac{b_{1}}{b_{2}}$ to the right hand side. We now have the 1 st term on the left and the sum of the first two terms on the right.

We proceed in this way until the left and right hand sides of PR agree to the required number of significant figures, obtaining the sum of n terms on the left and $n+1$ terms on the right.

In the following example we shall omit $\mathbf{C R}$, which is not used in this type of calculation, and show the 2 sides of $\mathbf{S R}$ and $\mathbf{P R}$ separately.

The operations on the Curta Il are:-

	SR	CR	PR	
Cl	300//. 553	/1.34*	0402.00//0.74102*	
C1	305//. 669	/2.88*	00871.70//1.77128*	
C1	310//.811	/4.64*	01417.30//3.19864*	
C1	315//.893	/6.67*	02056.75//5.01143*	
C1	320/.936	/8.83*	02747.95//7.03319*	
C1	326//1.000	/11.09*	03484.71//9.29319*	
C1	330//.982	/13.31*	04217.31//11.47323*	
C1	335//.888	/15.34*	04897.36//13.27587*	
C2	340//.790	/17.14*	05509.36//14.69787	
C1	345//. 667	/18.71*	06051.01//15.74506*	
C1	350//.517	/20.05*	06520.01//16.43784*	
Write d	vn $\quad \Sigma\left(f_{\lambda} E_{\lambda}\right)=16.43784$			
	$\Sigma\left(\lambda E_{\lambda}\right.$	$=6520.0$	and Clear dials	
	$\Sigma\left(E_{\lambda}\right)$	$=20.05$		
	SR	CR	PR	
C8	/16.43784	30260/	0497409.0384/	Clear CR
C1	/6520.01000	/9.531	0559551.25371/	Clear CR
C2 R	/27047.86100	/20.050	0017241.64066/	Clear CR
Now we divide by 8566.7				
	SR	CR	PR	
C8 R	/8566.7	2.0126/	/30024000	

EVALUATION of a POLYNOMIAL or of a POWER SERIES

A series $a_{0}+a_{f} x+a_{2} x^{2}+\ldots$ for any given value of x could be computed by raising x to the successive powers of 2,3 , etc., writing down the answers and accumulating the products of these answers and the appropriate coefficients a_{2}, a_{3}, etc. It is speedier and less liable to cause error, however, if we re-write the series in a form which will enable us to carry out the computation in a continuous operation, without writing down anything except the answer.

```
Suppose the powers in excess of 4 can be ignored,
we may re-write the series:- }\mp@subsup{a}{0}{}+x(\mp@subsup{a}{1}{}+x(\mp@subsup{a}{2}{}+x(\mp@subsup{a}{3}{}+x\mp@subsup{a}{4}{}))
```

Thus, we can set a_{4} on $\mathbf{S R}$, multiply by x; add a_{3}, multiply by x; add a_{2}, multiply by x; add a_{2}, multiply by x and add a_{0}. We then obtain the required value on PR.

Example: With a Curta Model II

$$
\begin{aligned}
& \text { Evaluate } 1+5 x+9 x^{2}+13 x^{3}+17 x^{4}+21 x^{5}+\ldots \\
& \text { to } 5 \text { places of decimals where } x=.0925
\end{aligned}
$$

We can ignore the terms containing powers of x greater than 6

| | SR | CR | PR | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| C3 | $/ 21$ | $/ .0925$ | $/ 1.9425^{*}$ | Clear CR |
| C5 | $/ 17$ | $/ 1.0000$ | $/ 18.9425^{*}$ | Clear CR |
| C6 | $/ .0924$ | $/ 18.9425$ | $/ 1.75218125^{*}$ | Clear CR |
| C8 | $/ 13.0$ | $1 /$ | $/ 14.75218125^{*}$ | Clear CR |
| C8 | $/ .092400$ | $/ 14.752181$ | $/ 1.364576742525^{*}$ | Clear CR |
| C8 | $/ 9.00000$ | $1 /$ | $/ 10.364576742525^{*}$ | |
| C8 | $/ 10.36458$ | 0 | $9 / 6742525^{*}$ | Clear PR |
| C1 | | $/ 925$ | $/ .95872 .3650^{*}$ | Clear CR |
| C8 | $/ 5.00$ | $1 /$ | $/ 5.958723650^{*}$ | Clear CR |
| C8 | $/ .092400$ | 5.9587236 | $/ .5511819330050^{*}$ | |

INTERPOLATION

Interpolation is the process of finding the value of a function corresponding to a value or the argument between two values for which the value of the function is given

There are many methods of interpolation, some of which are of little practical value and others which are appropriate for differing circumstances.

Here we confine ourselves to indicating the Curta technique applicable to the five methods most commonly useful.

1. Linear Interpolation
2. Neville's Method
3. Lagrange's Formula
4. Everett's Formula
5. Bessel's Formula

Of these, linear interpolation is used wherever it gives sufficient accuracy. In other cases, Bessel's is the most useful but requires tables of Bessel's coefficients and the computation of successive differences to the order necessary to give the required accuracy. Everett's method is useful where differences of order more than four are necessary, since only even order differences are involved.

Lagrange's method also uses a table of coefficients but requires no differencing and Neville's method requires no table of coefficients and gives an automatic check on the accuracy of the computation but is rather more labourous than the last three.

Notation.

Various notations are used in textbooks and tables, and our reason for using tha given below is that it appears to us to be short, unambiguous and comparatively easy to type on an ordinary typewriter.

If we have a function $y=f(x)$ and require the value f_{n}
corresponding to $x_{n}=x_{0}+n S x$ where $S x$ is the interval in the argument
the central difference table is

| Argument | $f(x)$ | Differences | | | |
| :---: | :---: | :--- | :--- | :--- | :--- | :--- |
| x_{-2} | f_{-2} | 1st | 2nd | 3rd | 4th |
| x_{-1} | f_{-1} | $S_{-1 / 2}$ | S^{2} | | |
| x_{0} | f_{0} | $S_{-1 / 2}$ | $S^{2}{ }_{0}$ | $S^{3}{ }_{-1 / 2}$ | $S^{4}{ }_{0}$ |
| x_{1} | f_{1} | $S_{1 / 2}$ | $S^{2}{ }_{1}$ | $S^{3}{ }_{1 / 2}$ | |
| x_{2} | f_{2} | $S_{1 / 2}$ | | | |
| | | | | | |

Example: Evaluate the following series to six places of decimals.

$$
.3+\frac{.3 \times .5}{2!}+\frac{.3 \times .5 \times .7}{3!}+\ldots
$$

Split SR and PR between the 8th and 9th dials.

	L	SR	R	L

CONSTRUCTION of an $n^{\text {th }}$ ORDER POLYNOMIAL

from $n^{\text {th }}$ DIFFERENCES

If we have a polynomial $a_{0} x^{n}+a_{1} x^{n-1}+\ldots$, then the $n^{\text {th }}$ difference are constant and equal to $a_{0} n(s x)^{2}$, where $s x$ is the interval of x. To construct the polynomial for successive values of x we require ' n ' consecutive values of the polynomial and the next value as a numerical check. We calculate the successive differences in these values and then build up from the constant $n^{\text {th }}$ difference.

Example: $y=x^{4}+3 x^{3}+7 x^{2}+5 x+2$ from 0 with intervals of 1					
The 4th difference is $24 x(.1)^{4}=.0024$					
Taking as the 1 st five terms $-.2,-.1,0, .1$ and .2 , for ease of calculation we get:-					
x	y	sy	$s^{2} y$	$s^{3} y$	$s^{4} y$
-. 2 .	1.2576				
. 3095					
-. 1	1.5671		. 1234		
		. 4329		. 0168	
0	2.0000		. 1402		. 0024
		. 5731		. 0192	
. 1	2.5731		. 1594		
		. 7325			
. 2	3.3056				

We shall use the symbols $y_{1}, s y_{1 / 2}, s^{3} y_{1 / 2}$, etc. to represent respectively the value of y corresponding to $x=.1$, the value of the second difference between $s y_{1}$ and $s y_{2}$, the value of the third difference between $s^{2} y_{0}$ and $s^{2} y_{1}$, etc.

We require a Curta Model II.
Set $s^{2} y_{1}$ on left of SR and y_{1} on the right.
Turn the handle once.
Set $s^{3} y_{1 / 2}$ on left of SR and $s y_{1 / 2}$ on the right.
Add .0024 to left hand side of SR and turn handle once
Check that right side of PR reads y_{2}

From now on, after each turn of the handle, increase left side of PR by 24 and add to right side the amount showing in the left of PR. To avoid mistakes it will be as well to move the carriage to position 8 so that right side of SR comes under left side of PR. Alter the setting dials and return the carriage to position 1 before making the next turn, thus:-

	SR	CR	PR
C1	$.1594,, 002.5731$	$/ .1$	$/ .1594,, 002.5731^{*}$
	$s^{3} y$	$s y$	x

The above table gives the values of y and the successive differences, in this order, $s s^{3} y, s y$, $s^{2} y$ and y. The final value of y should be checked. This will prove that the calculation has been made correctly, but not that the values of y have been written down correctly. This is proved by differencing the last column and checking the first differences with the second column of figures.

Owing to the compactness of the Curta it will be found a simple matter to add or subtract figures from the setting dials. For polynomials of degree higher than 4 , the calculation will figures trom the setting dials. For polynomials of degree higher than 4 , the calculation wil have to be perrormed in 2 or more parts; for instance, with a polynomial of order 0 , we
can find the 2 nd difference, as above, and build up the functions themselves from the second differences.

If a large volume of such work has to be done, it is best to use a National 3000 Class Accounting Machine, or, if the polynomial is of order greater than 6, a LogAbax Accounting Machine

2. Neville's Method

If linear interpolation gives insufficient accuracy, we can represent the function by a polynomial of higher degree. Both Aitken's and Neville's methods are based on using a polynomial of degree sufficient to give the required accuracy but Neville's method is slightly preferable for use with the Curta

Suppose the 1 st degree polynomial between points x_{0} and x_{1} is represented by

$$
f_{0,1}=\frac{-f_{-1}\left(x_{1}-x_{n}\right)+1\left(x_{0}-x_{n}\right)}{x_{1}-x_{0}}
$$

We can obtain a second degree polynomial, represented by $f_{-1,0,1}$, between x_{-1}, x_{0} and x_{1} formed in the same way from $f_{0,-1}$ and $f_{0,1}$, thus:-

$$
f_{-1,0,1}=\frac{f_{0,-1}\left(x_{1}-x_{n}\right)-f_{0,1}\left(x_{-1}-x_{n}\right)}{x_{1}-x_{-1}}
$$

We can set out the scheme of computation thus for a 4th degree polynomial:

x_{-2}	$x_{-2}-x_{n}$	f_{-2}			
x_{-1}	$x_{-1}-x_{n}$	f_{-1}	$f_{-2,-1}$	$f_{-2,-1,0}$	
x_{0}	$x_{0}-x_{n}$	f_{0}	$f_{-1,0}$	$f_{-1,0,1}$	$f_{-2,-1,0,1}$
x_{1}	$x_{1}-x_{n}$	f_{1}	$f_{0,1}$	$f_{0,1,2}$	$f_{-1,0,1,2}$
x_{2}	$x_{2}-x_{n}$	f_{2}	$f_{1,2}$		

Example (ii) Find the value of $\sin 4.215$ radians, from the table already given by Neville's method.

The only figures which it is necessary to write down are:-

x	$x-x_{n}$	1st degree	2nd degree	3rd degree
4.0	-215	-0.888982		
4.1	-115	79575	-0.878869	
4.2	-015	78268	23	-0.878836
4.3	+085	86054	52	4
4.4	+185			

The polynomials have been computed to 6 figures but we can only get 5 figure accuracy in the answer which may thus be taken as -0.87883 .

In the examples given here for each method we shall use the same set of figures from a table of $\sin x$ for x given in radians at intervals of 0.1. In this way the reader will be able to compare the time taken and accuracy of the different methods.

If the maximum contribution to an interpolate from the lowest order of differences is not to exceed .5 in the last significant figure, the limiting values for the differences ignored are given in 'Interpolation and Allied Tables' (H.M. Stationery Office) as follows:-

Difference Neglected.	Limiting Value.
2nd	4
3	60
4	20
5	500
6	100
7	3500
8	400
9	20.000
10	2.000

Thus, in the above example we can ignore differences over the 2nd. If we ignore 2nd differences we can only rely on the first two decimal places in the interpolate, though the third decimal place is not likely to be inaccurate by more than about 1 unit in the 3rd decimal place

1. Linear Interpolation.

The simplest form of interpolation is 'linear'. This assumes that a function $y=f(x)$ can be represented between points x_{0} and x_{1} by a straight line through these points, i.e. $f(x)$ can be represented by a polynomial of degree 1 . We will call this polynomial

$$
f_{0.1}=\frac{f_{0}\left(x_{1}-x_{n}\right)+f_{1}\left(x_{n}-x_{0}\right)}{x_{1}-x_{0}}
$$

For unit interval in the argument, this reduces to

$$
\begin{aligned}
f_{0.1} & =f_{0}+\left(x_{n}-x_{0}\right)\left(f_{n}-f_{0}\right) \\
& =f_{0}+n S_{1 / 2}
\end{aligned}
$$

Example (i) Find the value of $\sin 4.215$ radians by linear interpolation. There is no object in using more than 3 figures in $\sin x$ as we can only rely on two decimal places in the answer.

We could set $-f_{0}$, i.e. . 872 , and multiply by $\frac{x_{1}-x_{n}}{x_{1}-x_{0}}$ that is .85

Then set $-f_{l}$, i.e. . 916 , and multiply by $\frac{x_{n}-x}{x_{1}-x_{0}}$ that is . 15
obtaining .87860 in the product dials, so that the answer is .88 to two place of decimals. Actually the 1 st 3 figures .879 are in this case, correct
order to check the settings, however, it is generally considered preferable to set f_{0} and turn into PR. Then set S_{n} and turn into $\mathbf{P R}$, checking that we have $f_{1}=f_{0}+S_{n}$ in $\mathbf{P R}$. If we now make one negative turn to restore f_{0} in $\mathbf{P R}$ and then furn through . 15 we set .87860 on PR, as before, thus:-

	SR	CR	PR	
C3	/. 872	/100	/.87200*	
	/. 044	/200	/.91600*	Check PR
		/100	/.87200*	
		/115	/.87860*	
		Answe		

Note: If we were to set the full 5 figure values we should get

C3	/.87158	/100	/.8715800*	
	/. 04459	/200	/.9161700*	Check PR
		/100	/.8715800	
C2		/115	/.8782685*	

As the correct 5 figure interpolate is 87883 , we are not gaining in accuracy by working to more than 3 figures.

LAGRANGE \& EVERETT INTERPOLATION COEFFICIENTS

n	$L_{-1}=E_{0}{ }^{i i}$	L_{0}	L_{1}	$L_{2}=E_{1}{ }^{i i}$	n
	-	+	+	-	
0.00	0.00000	1.00000	0.00000	0.00000	1.00
.01	.00328	.99490	.01005	.00167	0.99
.02	.00647	.98960	.02020	.00333	.98
.03	.00955	.98411	.03044	.00500	.97
.04	.01254	.97843	.04077	.00666	.96
0.05	0.01544	0.97256	0.05119	0.00831	0.95
.06	.01824	.96651	.06169	.00996	.94
.07	.02094	.96027	.07228	.01161	.93
.08	.02355	.95386	.08294	.01325	.92
.09	.02607	.94726	.09369	.01488	.91
0.10	0.02850	0.94050	0.10450	0.01650	0.90
.11	.03084	.93357	.11538	.01811	.89
.12	.03309	.92646	.12634	.01971	.88
.13	.03525	.91920	.13735	.02130	.87
.14	.03732	.91177	.14843	.02288	.86
0.15	0.03931	$0 . / 90419$	0.15956	0.02444	0.85
.16	.04122	.89645	.17075	.02598	.84
.17	.04304	.88856	.18199	.02751	.83
.18	.04477	.88052	.19328	.02903	.82
.19	.04643	.87233	.20462	.03052	.81
0.20	0.04800	0.86400	0.21600	0.03200	0.80
.21	.04949	.85553	.22742	.03346	.79
.22	.05091	.84692	.23888	.03489	.78
.23	.05224	.83818	.25037	.03631	.77
.24	.05350	.82931	.26189	.03770	.76
0.25	0.05469	0.82031	0.27344	0.03906	0.75

The operations on the Curta are are follows:-

	SR	CR	PR	
(a) Cl	/. 75680	9/885	9/1296800	
Cl	/.81828	/100	/8889820*	Clear CR \& PR
C1		9/85	9/8772580	
C1	/.87158	/100	/8795750*	- do -
C1		/85	/7408430	
Cl	/.91617	/100	/8782685*	- do -
Cl		/ 185	/ 16949145	
Cl	/.95160	/100	/8860545*	

Note that since the interval between the x 's is .1 the figure in PR can be divided mentally by $x_{-1}-x_{2}$ etc. to obtain $f_{-2,-1}$, etc.
The CR is only cleared after each pair of multiplications, when it should read 100. Note also that it is only necessary to set each value of $\sin x$ once.

	SR	CR	PR	
(b) C1	$\mathbf{8 8 9 8 2}$	$9 / 85$	$9 / 8665279$	
C1	$\mathbf{7 9 5 7 5}$	$/ 200$	$/ 15773895$	
C1		$/ 85$	$/ 6763875$	
Clear CR \& PR				
C1	$\mathbf{7 8 2 6 8}$	$/ 200$	$/ 15764695$	- do -
		$/ 185$	$/ 141.79580$	
C1	86054	$/ 200$	$/ 15770390$	- do -

Note that it is unnecessary to set the first 8 which is common to all the values of the 1 st degree polynomial.

	SR	$C R$	PR	
(c) C1	69	$/ 85$	$/ 5865$	
C1	23	$/ 300$	$/ 10810$	 C1
Clear CR \& PR				

[^1]3. Lagrange's Formula

If we extend the value of the four point polynomial $f_{-1,0,1,2}$
in terms of $f_{-1}, f_{0}, f_{1^{\prime}}$, and f_{2}, we have an expression

$$
f n=f_{-1} L_{-1}(n)+f_{0} L_{0}(n)+f_{1} L_{1}(n)+f_{2} L_{2}(n)
$$

where L_{-1}, L_{0}, L_{1} and L_{2} are 3rd degree polynomials in n, and are known as Lagrange Interpolation Coefficients. They can be evaluated and tabulated for various values of n and for various degrees of the polynomial, see Chambers' 6 figure tables which give the coefficients for 4 and 6 point interpolation. A table or four point interpolation and two figure values for n is given in Curta Table No. 103

The value of $f n$ can be found by accumulating the products $f_{-1} L_{-1}(n)$ etc.

Example (iii) Find the value of $\sin 4.215$ radians by Lagrange's Formula
For $n=.15$ and a 4 -point polynomial the Lagrange coefficients (see Curta Table No. 103) are: -

$$
\begin{array}{ll}
L_{-1} & -.03931 \\
L_{0} & +.90419 \\
L_{1} & +.15956 \\
L_{2} & -.02444
\end{array}
$$

All we need to do is to set the values of f_{-1} etc. in turn, multiply by the coefficients and accumulate the products thus:-

	SR	CR	PR
C1	.81828	$9 / 6069$	$9 / 678334132^{*}$
C1	.87158	$/ .86488$	$/ 7559073334^{*}$
C1	.91617	1.02444	$/ 9020914186^{*}$
C1	.95160	1.00000	$/ 8788343146^{*}$
		Answer $=-0.87883$	

[^2]4. Everett's Formula.

We can express Lagrange's Formula for a 4-point polynomial in terms of f_{0} and 1 st and 2 nd differences, by taking

$$
f_{-1}=f_{0}-S_{1 / 2}+S_{0}^{2}, \quad f_{1}=f_{0}+S_{1 / 2}, \quad f_{2}=f_{0}+2 S_{1 / 2}+S_{1}^{2}
$$

Lagrange's Formula then becomes

$$
\begin{aligned}
& \quad f_{n}=f_{0} L+S_{1 / 2}\left(2 L_{2}+L_{1}-L_{-1}\right)+L_{-1} S_{0}^{2}+L_{2} S_{1}^{2} \\
& \text { Now } L=1 \text { and } 2 L_{2}+L_{1}-L_{-1}=n \\
& \text { So } f_{n}=f_{0}+n S_{1 / 2}+L_{-1} S_{0}^{2}+L_{2} S_{1}^{2}
\end{aligned}
$$

This is Everett's formula for a 4-point polynomial. L_{-1} and L_{2} are usually written $E_{0}{ }^{i l}$ and $E_{1}{ }^{i}$ respectively. The full formula is
$f_{n}=f_{0}+n S_{1 / 2}+E_{0}^{i i} S_{0}+E_{1}^{i i} S_{1}^{2}+E_{0}^{i v} S_{0}^{4}+E_{1}^{i v} S_{1}^{4}+$ etc.,
and it will be noticed that all differences after the first are even-order.
Everett's interpolation coefficients are tabulated in 'Interpolation and Allied Tables'. The 'throwback' can be used as with Bessel's Formula.

Curta Table No. 103 gives values of $E_{0}{ }^{i i}$ and $E_{l}{ }^{i i}$ for 2 figure values of n.

Example (iv) Find the value of $\sin 4.215$ radians, by Everett's Formula Again we can ignore differences greater than the $2 n$.
rom Curta Table No. 103.

$$
\begin{aligned}
& E_{0}^{i i}=-.03931 \\
& E_{1}^{i i}=-.02444
\end{aligned}
$$

	SR	CR	PR	
C6	.87158	1.00000.	$/ .8715800000^{*}$	Clear CR
C5	.04459	$/ .15000$	$/ .8782685000^{*}$	Clear CR
C4	.00871	1.03931	1.8786108901^{*}	Clear CR
C4	.00916	1.02444	$/ .8788347605$	Clear CR

COTTON CLOTH CALCULATIONS

Calculations of warp and weft weight in lbs. involve division by the 'Hank Length' and the 'Counts' of yarn and weft. This may be carried out on the Curta by the method of transfer multiplication given in A 2 but, since Hank Length is a constant, 840, a little time will be saved by using a table of reciprocals of Hank Length \times Counts - Curta Table 20.
(a) Warp weight in lbs. $=$

No. of ends in width \times Tape Length in yards
Hank Length \times Counts of yarn

Example (i)

No. of ends	21424
Tape Length	106 yards
Counts	38

From Table 20 the reciprocal of 38×840 is .00003133 , so all we have to do is to evaluate $21424 \times 106 \times .00003133$ by successive multiplication (A 1) setting eight decimal places.

SR	CR	PR	
$/ 3133$	$/ 106$	$/ 332098$	Clear CR
/21423	$/ 332098$	$/ 7114867552$	

Answer = 71.15 lbs . or 71 lbs 2 oz .

CURTA TABLE No. 103.2

LAGRANGE \& EVERETT INTERPOLATION COEFFICIENTS

n	$L_{-1}=E_{0}{ }^{i i}$	L_{0}	L_{1}	$L_{2}=E_{1}{ }^{i i}$	n
	-	+	+	-	
0.25	0.05469	0.82031	0.27344	0.03906	0.75
.26	.05580	.81119	.28501	.04040	.74
.27	.05683	.80194	.29661	.04172	.73
.28	.05779	.79258	.30822	.04301	.72
.29	.05868	.78309	.31986	.04427	.71
0.30	0.05950	0.7350	0.33150	0.04550	0.70
.31	.06025	.76380	.34315	.04670	.69
.32	.06093	.75398	.35482	.04787	.68
.33	.06154	.74407	.36648	.04901	.67
.34	.06208	.73405	.37815	.05012	.66
0.35	0.06256	0.72394	0.38981	0.05119	0.65
.36	.06298	.71373	.40147	.05222	.64
.37	.06333	.70343	.41312	.05322	.63
.38	.06361	.69304	.42476	.05419	.62
.39	.06384	.68256	.43639	.05511	.61
0.40	0.06400	0.67200	0.44800	0.05600	0.60
.41	.06410	.66136	.45959	.05685	.59
.42	.06415	.65064	.47116	.05765	.58
.43	.06413	.63985	.48270	.05842	.57
.44	.06406	.62899	.49421	.05914	.56
0.45	0.06394	0.61806	0.50569	0.05981	0.55
.46	.06376	.60707	.51713	.06044	.54
.47	.06352	.59601	.52854	.06103	.53
.48	.06323	.58490	.53990	.06157	.52
.49	.06289	.57372	.55123	.06206	.51
0.50	0.06250	0.56250	0.56250	0.06250	0.50

M 21.9
CURTA TABLE No. 104

BESSEL INTERPOLATION COEFFICIENTS

5. Bessel's Formula.

This formula expresses the interpolated value of f in terms of central differences, thus:-

$$
f_{n}=f_{0}+n S_{1 / 2}+B^{i i}\left(S_{0}^{2}+S_{1}^{2}\right)+B^{i i i} S_{1 / 2}^{3}+B^{i v}\left(S_{0}^{4}+S_{1}^{4}\right)+\text { etc. }
$$

where $B^{i i}, B^{i i i}, B^{i v}$, etc. are known as Bessel's Interpolation Coefficients dependent on the value or n, and are tabulated, as for instance in IInterpolation and Allied Tables'. A table of $B^{i i}$ and $B^{i i i}$ to 3 decimal places is given in Curta Table No. 104

A good approximation is given by applying Bessel's formula correct to 2nd or 3rd differences only and modifying S^{2} by subtracting . 18484 This is known as 'throwback' from 4th to 2 nd differences and may be used if the 4 th difference does not exceed 1000

Example (v) Find the value of $\sin 4.215$ radians by Bessel's Formula
In this case we can ignore differences greater than the 2nd, as already stated. Therefore all we have to do is to look up the value of $B^{i i}$ for n in the tables, e.g. Curta Table No. 104 gives -.03187 for $B^{i i}$. We set f_{0} and transfer to PR, set $S_{1 / 2}{ }^{1}$ and multiply by n, and set $S_{0}{ }^{2}+S^{2}$ and multiply by .032, thus:-

	SR	CR	PR	
C6	.87158	1.00000	1.8715800000^{*}	Clear CR
C5	.04459	1.15000	1.8782685000^{*}	Clear CR
C4	.01787	1.03187	1.8788380169^{*}	

Note that $S_{0}{ }^{4}+S_{1}^{4}=.00019$ so that the 'throwback' from 4th to 2nd difference could only amount to $.00019 \times .184 \times .03187=.0000011141752$

n	$B^{i i}$ -0.0	$B^{i i i}$ $+0.0-$	n	n	$B^{i i}$	$B^{i i i}$ $+0.0-$	n
0.00	0000	0000	1.00	0.25	4687	0781	0.75
.01	0247	0081	.99	6	4810	0770	.74
.02	0490	0157	.98	7	4927	0756	.73
.03	0727	0228	.97	8	5040	0739	.72
.04	0960	0294	.96	9	5147	0721	.71
0.05	1187	0356	0.95	0.30	5250	0700	0.70
.06	1410	0414	.94	1	5347	0677	.69
.07	1627	0467	.93	2	5440	0653	.68
.08	1840	0515	.92	3	5527	0626	.67
.09	2047	0560	.91	4	5610	0598	.66
0.10	2250	0600	0.90	0.35	5687	0569	0.65
.11	2447	0636	.89	6	5760	0538	.64
.12	2640	0669	.88	7	5827	0505	.63
.13	2827	0697	.87	8	5890	0471	.62
.14	3010	0722	.86	9	5947	0436	.61
0.15	3187	0744	0.85	0.40	6000	0400	0.60
.16	3360	0762	.84	1	6047	0363	.59
.17	3527	0776	.83	2	6090	0325	.58
.18	3690	0787	.82	3	6127	0286	.57
.19	3847	0795	.81	4	6160	0246	.56
0.20	4000	0800	0.80	0.45	6187	0206	0.55
.21	4147	0802	.79	6	6210	0166	.54
.22	4290	0801	.78	7	6227	0125	.53
.23	4427	0797	.77	8	6240	0083	.52
.24	4560	0790	.76	9	6247	0042	.51
0.25	4687	0781	0.75	0.50	6250	0000	

Examples

$$
\begin{array}{lll}
\text { es. } \\
n=0.15 & B^{i i}=-0.03187 & B^{i i i}=+0.00744 \\
n=0.55 & B^{i i}=-0.06187 & B^{i i i}=-0.00206
\end{array}
$$

Cloth Length in yds. x P. P. inches x width in Reed

Hank Length \times Counts of wef
Example (ii)

Cloth Length	124 yds
P.P. inches	64
Width in Reed	36
Counts of weft	34

From Table 20 the reciprocal of 34×840 is .00003501
Evaluating $124 \times 64 \times 36 \times 3501$ and resetting eight decimal places, we get by successive multiplication 10.002

C1	$/ 124$	$/ 64$	$/ 7936$	Clear CR
C4	$/ 35$	$/ 7936$	$/ 285696$	
C6	$/ 3500$	$/ 285696$	$/ 10.00221696$	

[^0]: Where t_{1} and t_{2} are the temperatures of steam and air.
 K_{1}, K_{2} etc. are the thermal conductivities of layers 1,2 etc.
 d, d_{1}, d_{2} etc. are the diameters of the pipe and of layers 1,2 etc. and D is the overall diameter
 E is the film conductance between insulation surface and outside air
 K_{1}, K_{2} etc. can be obtained from a graph which should be calibrated
 in terms of $2 K_{l}$ etc.
 E can be obtained from a graph or tables which should be calibrated
 or tabulated in terms of $\frac{1}{E}$

[^1]: It is only necessary to set the last 2 figures of the 2 nd degree polynomial.
 Since the two values of the 3rd degree polynomial agree to 5 decimal places, it is unnecessary to proceed further

[^2]: Note that it is not necessary to clear CR as the sum of the Lagrange coefficients should b
 1.0 and the multipliers can be checked in this way.

